
            

WINDOWS SCRIPTING GUIDE FOR ADMINISTRATORS                                

2005.  DR. P. G. GYARMATI 

Managing a Windows network can involve a lot 

of repetitive tasks, especially when that network 

includes large numbers of users and desktops. 

One of the best ways to automate these tasks 

is through the use of scripting. Windows 

includes two built-in methods of scripting: 

Windows shell scripting and VBS. 

This compilation of articles by Dr. P. G. 

Gyarmati introduces the role that scripts can 

play in Windows networks, shows how to get 

started with both Windows shell scripting and 

VBS, walks through a few advanced scripting 

techniques, and directs you to additional 

scripting resources. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 2 of 23  

WINDOWS SCRIPTING GUIDE FOR ADMINISTRATORS, TABLE OF CONTENTS  

UNDERSTAND THE ROLE OF SCRIPTING IN NETWORK ADMINISTRATION ....................................................3 
What is scripting?.......................................................................................................................................3 
How is scripting used? ...............................................................................................................................3 
The scripting advantage .............................................................................................................................4 

GETTING STARTED WITH WINDOWS SCRIPTING LANGUAGES AND PLATFORMS .........................................4 
Shell scripting.............................................................................................................................................4 
Conditional processing...............................................................................................................................4 
Error trapping ............................................................................................................................................4 
System variables .........................................................................................................................................5 
Windows Scripting Host .............................................................................................................................5 
Visual Basic Scripting Edition....................................................................................................................5 
JScript.........................................................................................................................................................6 
Which one to use?.......................................................................................................................................6 

WINDOWS SHELL SCRIPTING CAN EXPEDITE NETWORK ADMIN TASKS .......................................................6 
Logon scripts ..............................................................................................................................................6 
Commands in logon scripts ........................................................................................................................7 
Using shell scripting for other purposes ....................................................................................................9 
Best practices .............................................................................................................................................9 
Moving on...................................................................................................................................................9 

FIRST STEPS IN VBS SCRIPTING FOR ADMINISTRATORS ..............................................................................9 
Objects and methods.................................................................................................................................10 
Introducing FileSystemObject ..................................................................................................................10 
Using FileSystemObject ...........................................................................................................................10 
Releasing FileSystemObject .....................................................................................................................11 
Just the beginning.....................................................................................................................................11 

IMPROVE ADMINISTRATION BY USING THE SHELL AND NETWORK VBS OBJECTS ...................................11 
Object recap .............................................................................................................................................11 
Use the WshShell object to create a shortcut ...........................................................................................12 
Use the WshShell object to work with the registry ...................................................................................13 
Use the WshNetwork object to map a network drive ................................................................................14 
The sky's the limit .....................................................................................................................................14 

IMPROVE EFFICIENCY OF ADMIN SCRIPTS WITH PROGRAMMING CONSTRUCTS .......................................14 
Conditional processing in Windows shell scripts .....................................................................................14 
Dealing with errors in Windows shell scripts...........................................................................................15 
Conditional processing in VBS.................................................................................................................16 
Iterative processing in shell scripting.......................................................................................................16 
Iterative processing in VBS ......................................................................................................................17 
Be constructive .........................................................................................................................................18 

BEEF UP YOUR ADMIN SCRIPTS WITH THESE EXTRA TOOLS .......................................................................18 
Running executables in scripts .................................................................................................................18 
Head for the tool shed ..............................................................................................................................19 
Also consider KiXtart ...............................................................................................................................20 
End sum ....................................................................................................................................................20 

THESE RESOURCES CAN HELP YOU WRITE ADMIN SCRIPTS........................................................................20 
Useful books .............................................................................................................................................20 
Web sites for admin scripters ...................................................................................................................21 
Sticking to the script .................................................................................................................................21 

LISTINGS ......................................................................................................................................................21 
First steps in VBS scripting for administrators ........................................................................................21 
Improve administration by using the Shell and Network VBS objects......................................................22 

APPENDIX .....................................................................................................................................................22 
TechRepublic Books and CDs: .................................................................................................................22 
Downloads: ..............................................................................................................................................22 
Articles and Columns: ..............................................................................................................................23 
Segments...................................................................................................................................................23 
TechRepublic site features........................................................................................................................23 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 3 of 23   

UNDERSTAND THE ROLE OF SCRIPTING IN NETWORK ADMINISTRATION

 
Network administrators have used scripting since long before Windows or even DOS came on the 
scene. UNIX administrators, for instance, have been using shell scripting and its powerful capabilities 
for decades. Scripting can significantly ease the burden of network administration. But learning to 
create useful and effective scripts for networking tasks is not easy and requires a lot of patience and 
practice. Before you begin, it's important to have a good understanding of what scripting is and why it 
is so useful. 

In the first article of this scripting guide, I will provide information to help you understand how 
scripting can play a role in network maintenance and management. In subsequent articles, I will talk 
about the various scripting languages and platforms, basic programming concepts for scripting, and 
using Windows shell scripting and Visual Basic scripting for network administration. I'll also point you 
toward other resources that are available for learning how to write scripts. 

What is scripting? 
Simply stated, a script is a small, interpreted program that can carry out a series of tasks and make 
decisions based on specific conditions it finds. By "interpreted," we mean that when it is run, it is 
carried out one line at a time, as opposed to "compiled," which is the process of turning it into machine 
language before it is run. A script is created using ASCII text, so Windows Notepad or a similar text 
editor is the only tool required. 

A number of scripting "languages" are available for you to choose from, each with its own 
capabilities and limitations. These languages include Windows native shell scripting, Visual Basic 
Scripting Edition, JavaScript, Kixtart, and Perl. Which one you choose will ultimately depend on a 
combination of the tasks required and your own experience and inclinations. 

Each scripting language has a collection of commands or keywords and a set of rules on how to use 
them. The set of rules for writing a script in any given language is called the syntax. Once you learn 
the keywords and syntax, you can use a text editor to write the script and then save it with a file 
extension that is appropriate to the scripting language you are using. Some of the more common file 
extensions you will see are .bat, .cmd, .vbs, .js, and .kix. 

How is scripting used? 
Scripting lets you automate various network administration tasks, such as those that are performed 
every day or even several times a day. For example, login scripts run every time a user logs in to the 
network and can perform tasks like mapping network drives for the user based on certain conditions, 
such as group membership. Another example of script use might be a situation where you want to 
have each Windows NT server create a new Emergency Restore Disk and then copy the contents of 
that disk to a network location. 

Other tasks might need to be carried out only once, such as a modification to the registry, but to a 
large number of servers that are widely distributed geographically. In a case like that, you could create 
and distribute a single script to run the task on each server. 

You can start scripts manually, but you can also start them automatically, either by a specific event 
or scheduled via the Windows Task Scheduler. Windows NT allows scripts to be run automatically 
each time a user logs in to the network. Windows 2000 goes much further and can be configured to 
automatically run separate scripts upon: 

 

Machine startup 

 

Machine shutdown 

 

User login 

 

User logout 

You could, for instance, map specific network drives when a user logs in and then automatically 
copy that user's Favorites folder to a network share when he or she logs out so that the data is 
preserved in a central location. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 4 of 23 

The scripting advantage 
Scripting in network administration offers significant advantages. It allows you to: 

 
Save time Scripts can carry out complex tasks and be invoked automatically, without the 
intervention of the network administrator, so the admin can concentrate on other tasks while the 
script runs. 

 
Be consistent A script need be written only once and can then be invoked many times. It is 
much less error-prone than manually carrying out the task each time. 

 
Be flexible Scripts can use decision-making logic to respond to different conditions. Rather than 
statically mapping a workstation to persistent drives, for example, network drives can be mapped 
in a variety of ways based on which user is logging on to the machine. You could write a script to 
check whether a file exists and delete it if it does, or display an error message if it doesn't. The 
only real limit to scripting is your imagination.   

GETTING STARTED WITH WINDOWS SCRIPTING LANGUAGES AND PLATFORMS

 

You can think of a scripting platform as an environment in which a script can run. Given that a script is 
nothing more than a collection of text, there has to be some means for the computer on which the 
script is running to understand that text and carry out its instructions. 

In Windows, there are two major scripting platforms to choose from: the Windows shell and the 
Windows Scripting Host (WSH). We'll cover the Windows shell first and then look at the WSH, along 
with its two scripting languages, VBS and JScript. 

Shell scripting 
A shell is nothing more than an interface that allows a user to communicate with, or issue commands 
directly to, the operating system. The concept of a shell has been around in UNIX for many years. In 
fact, there are several shells in the UNIX world, each with its own features and commands that make it 
suitable for various tasks. 

In Windows, there is no such diversity. You have only one shell, the Windows shell, which is built 
into the operating system. And you are undoubtedly already familiar with the interface, although you 
probably call it the command prompt or, if you're a real old-timer, perhaps the DOS prompt. 
Technically speaking, it's called a command shell and is run by executing the file Cmd.exe, found in 
C:\Winnt\System32. Probably the easiest way to run it is to simply click Start | Run, type cmd in the 
text box, and click OK, or create a shortcut to Cmd.exe. 

The Windows shell comes with a set of built-in commands, many of which are well known and 
commonly used, such as dir, copy, del, cd, etc. Commands and their associated parameters are 
usually issued one at a time at the command line. More important for our purposes is the fact that 
commands can also be used in a batch mode. That is, using a text editor, you can write a separate 
command on each line, saving the finished product with the extension of either .bat or .cmd. This turns 
the text file into an executable that will be run as an interpreted program, carrying out each command 
one line at a time, in order. This is what we call shell scripting. 

Although the Windows scripting language is far from being a full-scale programming language, it 
does come with some useful commands and features that allow it to have some of the flexibility you'd 
expect to find in a program. Some of these features are: 

Conditional processing 
You can have your script test to see whether a certain condition exists, and if it does, do one thing, 
and if it doesn't, do something else. 

Error trapping 
Every time a command is carried out, Windows generates an error level, with error level 0 being "no 
error." This allows you to include a provision in your script to gracefully exit from an error it might 
encounter. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 5 of 23 

System variables 
Information about a given computer and the user who is logged on to that computer can be found in 
the registry, at HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER. Some of that information, 
which can be of use in scripting, is available in the form of system variables. 

To get an idea of what is available, you can open the command shell and type the command set. 
This will display a list of all the system variables and their current values. These can then be 
referenced in a script by bracketing them with the percent symbol. For instance, %username% will 
refer to the username of whoever is currently logged on to the computer. An example of its use would 
be to copy the current user's Favorites folder and all subfolders on the local machine to that user's 
home folder on the server: 

xcopy %userprofile%\favorites \\fileserver\home\%username% /s/y 

I will talk more about these features in a future article devoted to shell scripting basics. You'll find a 
reference for all of the commands available for shell scripting in Windows Help. If you are using 
Windows 2000, click on Start | Help. In the Search tab, type command reference and click List Topics. 
Then, under Select Topic To Display, double-click on the topic Windows 2000 Command Reference 
Main Page. 

In Windows NT, click on Start | Help. In the Find Tab, type command. Then, in the Pick A Topic 
pane, select Commands Index and click the Display button. 

Windows Scripting Host 
The Windows Scripting Host (WSH) is a set of three files (Wscript.exe, Cscript.exe, and Wsh.ocx) that 
provide an environment for other scripting languages to run in. Built into the WSH are two "engines" 
for the scripting languages Visual Basic Scripting Edition (VBS) and JScript, which is a Microsoft 
version of JavaScript. You can also load other engines for such scripting languages such as Perl or 
REXX, if you want. 

Although the shell scripting language remains a fixed part of the operating system, WSH can be 
separately updated and upgraded, since it exists as separate files. In addition, it can be installed on 
several versions of Windows. To download the latest version of WSH, go to the Microsoft Windows 
Script Page

 

and follow the link to the download page. To determine which version is currently 
installed, type cscript at the command shell. 

The WSH makes use of a rather strange concept called an object model, which can take some 
getting used to for a newcomer to scripting and programming. You can think of an object as a tool that 
you use to accomplish certain tasks. Each object has a set of methods associated with it. You can 
think of methods as the functions or capabilities of each tool, or object. The root object for WSH is 
called WScript, and from it, other objects can be created and used within scripts to accomplish tasks. 

Both VBS and JScript are object-based languages, and each uses its own object model that works 
in conjunction with the WSH object model. 

Visual Basic Scripting Edition 
In future articles, I will discuss the basics of using VBS for writing scripts. For the moment, let's take a 
quick look at what it can do. 

VBS is a subset of the full-blown programming language Visual Basic. (Another subset of Visual 
Basic, called Visual Basic for Applications VBA is used primarily to create macros for Microsoft 
Office applications.) Using the objects and methods found in both the Windows Scripting Host and in 
VBS, along with correct VBS syntax, you can create a VBS script. 

You do this by using a text editor such as Notepad to write out a set of commands and then save the 
finished script with the file extension .vbs. Once this file is created, you can execute it just as you 
would any other executable file. For example, you can: 

 

Double-click on the icon. 

 

Type the filename at the command prompt. 

 

Type the name of the file on its own line within a shell script. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 6 of 23 

JScript 
JScript is the Microsoft implementation of JavaScript. JScript and JavaScript are not subsets of the 
Java programming language. However, like VBS, JScript is an object-based scripting language that 
can be used to automate tasks for network administration. 

You create a JScript file in the same way you create a VBS file, except that you must save it with the 
file extension .js. The default icon for a JScript file looks just like the icon for a VBS file, except that the 
VBS icon is blue and the JScript icon is yellow. You execute a JScript file in the same way you 
execute a VBS file. 

Which one to use? 
The choice of whether to use VBS or JScript is largely a matter of preference. If you've worked with 
JavaScript on Web sites, you may be more comfortable using JScript for network administration 
scripting. On the other hand, if you have some experience with Visual Basic, VBA, or VBS Web 
scripting, you will probably prefer using VBS for networking scripts. 

It is even possible to use both scripting languages in the same script, if you save it with the file 
extension .wsf (Windows Script File). However, learning both languages requires twice the time, so it's 
probably best to stick to just one. For the purposes of this guide, I will concentrate on VBS rather than 
JScript simply because that is my preference.   

WINDOWS SHELL SCRIPTING CAN EXPEDITE NETWORK ADMIN TASKS

 

Some of the more common Windows scripting languages and platforms include Windows shell 
scripting, Visual Basic Scripting (VBS), and JScript, as I discussed previously. Now we're going to take 
an in-depth look at Windows shell scripting as it relates to network administration. For the purposes of 
this discussion, I'm going to assume that you understand the basics of using the Windows command 
line, including the use of parameters and switches, such as the following: 

del? myfile.txt /f 

Here, "del" is the command, "myfile.txt" is the parameter (which provides required information to the 
del command in this case, which file to delete), and "/f" is the switch, which modifies the behavior of 
the command so that it forces the deleting of read-only files. 

Logon scripts 
Probably the most common use for shell scripting is logon scripts. A logon script is used to configure 
the Windows environment for a user at the time of logon and is usually specific to a group of users. 
For instance, members of the Finance group may automatically map network drives to the finance 
network share folder, while the Marketing group may automatically map their network drives to the 
marketing network share. 

To make this work, a script is created for each user or group of users and then copied to the 
appropriate server location (based on the version of Windows). In Windows NT, the script file is 
normally placed in C:\Winnt\System 32\Repl\Export\Scripts (or Import, depending on how you have 
configured replication). You then point to that file in the User Account Properties dialog box. 

When using Active Directory, you deploy the logon script via a Group Policy. First, copy the script 
file to the Sysvol subfolder. Figure A shows where to access this subfolder. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 7 of 23 

FIGURE A 

 

Finding the Scripts folders in Sysvol 

Note that you also have the choice of scripts for logoff, startup, and shutdown. You can then directly 
edit the Group Policy object for a given container to include that script, as shown in Figure B. 

FIGURE B 

 

Edit the script in a specific container in Active Directory. 

Commands in logon scripts 
One of the most useful commands to use in a logon script is NET USE. It's just one subset of many 
available NET commands. 

The NET USE command allows you to establish drive mappings. When used in a logon script, it can 
tailor the drive mapping to a specific user or group of users. For instance, let's say that the marketing 
department requires a drive mapping to the marketing folder on Server3, another drive mapping to the 
admin folder on Server2, and another drive mapping to the individual user's home folder found in the 
"home folder" share on Server1. Here is an example of how you would script that: 

NET USE F: \\server3\marketing PERSIST:NO 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 8 of 23 

NET USE G: \\server2\admin PERSIST:NO 

NET USE H: "\\server1\home folder\%username%" PERSIST:NO 

The keyword PERSIST at the end of each line addresses whether to reconnect the drive mapping at 
the next startup. Most often, you do not want this to happen because another user may require 
different drive mappings. 

You also should note a couple of things in the third line of code. First, there are quotation marks 
around the path. This is required because there is a space within the pathname. Second, I used the 
environmental variable %username%. When a user logs on, that username is stored temporarily in the 
registry and is available within the Windows shell. (To verify this, type echo %username% at the 
command line and you should see your own logon name provided as output.) If each user has a folder 
that is named the same as that person's logon name, you can use that to automatically map a drive to 
the home folder. 

The %username% variable is one of several environment variables that are created automatically by 
Windows and that can be used similarly in your scripts. To see a complete list, you can type set at the 
command prompt. You can also create your own variables with this command. To find out how, type 
set /? at the command prompt. 

WINDOWS COMMANDS 
To see a complete list of the commands and information on how to use them, refer to Windows Help. If 
you are using Windows 2000, click on Start | Help. In the Search tab, type command reference. Under 
Select Topic To Display, double-click on Command Reference Main Page. In Windows NT, click on 
Start | Help and type command in the Find tab. Then, under Pick A Topic, select Commands Index 
and click the Display button. 

Another useful logon script command is NET TIME, which is used to synchronize time on a network 
to a time server. You can use a number of switches with this command. Again, you can check the 
command reference in Windows Help. The simplest use of NET TIME might look something like this: 

NET TIME \\timesvr8 /SET /YES 

This tells the computer to synchronize its time with that on the server named timesvr8. The /YES 
switch tells it to force the synchronization even if the named server is not a time source server. 

In a future article, I will discuss certain programming constructs you will find useful in scripting, 
including conditional processing. Here's a look at one form of conditional processing. 

Administrators in Novell NetWare have long appreciated the ability to tell the logon script to do 
something if the user is a member of a certain group by using the statement IF MEMBER OF. 
Although no such statement is available in Windows scripting, there are two possible workarounds, 
depending on whether you are administering a Windows NT domain or a Windows 2000 domain with 
Active Directory. 

The Windows NT Resource Kit includes a utility named IFMEMBER.EXE, which can be used for the 
same purpose as the NetWare IF MEMBER OF. Unfortunately, its use is rather convoluted, requiring 
yet another construct called ERRORLEVEL. Here's how it works. Lets say that if the user logging on is 
a member of the both the Marketing group and the Managers group, you want to map a drive to a 
share that only marketing managers have access to. First, you would include the line: 

IFMEMBER marketing managers 

The IFMEMBER utility, assuming that it is in a search path, will check for membership in all groups 
listed and then exit and store the number of groups the user is a member of in a special variable called 
ERRORLEVEL. In this case, that number should be 2. So the entire process would look like this: 

IFMEMBER marketing managers 

IF NOT ERRORLEVEL 2 EXIT 

NET USE J: \\SERVER4\MKTGMGR? /PERSIST: NO? 

If the user is a member of both groups, the value stored in ERRORLEVEL will be 2. If the value is 
not 2, the script will end. But if the value is 2, it will execute the next statement. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 9 of 23 

The IFMEMBER.EXE utility may also be used in a Windows 2000 domain, but if you are using 
Active Directory, you have another option. Rather than reference groups in logon scripts, you can 
design your Organizational Units along the same lines as those groups. That way, you can create 
Group Policy Objects linked to each OU, with a specific logon script for that OU, without having to use 
the IFMEMBER utility. 

Using shell scripting for other purposes 
As I mentioned, a logon script is designed to be invoked every time a user logs on to the network. 
There are times, however, when you will find that a script can be useful even if it is used only once. 
For example, suppose that your organization has just completed work on a Geographic Information 
System (GIS) that displays maps. Any GIS involves a large number of "shape" files and images, often 
in a complex directory structure. They will run best if installed locally on the workstation, so you decide 
that you want to copy these files, with directory structures intact, from a network share to the local hard 
drive of each workstation. 

You could, of course, sit down at each computer, open the command prompt, and manually type 
each line one at time. But obviously, it would greatly simplify things to write one script that contains 
every command that must be issued, each on its own line, and simply run that script at each 
workstation. 

Using the COPY command or the more versatile XCOPY command, you could create a script that 
would accomplish the job, copy it to a removable medium such as a floppy disk, and run the script at 
each station by typing a single command. The advantages are twofold: 

 

It will save you time, since you don't have to type every command at every workstation. 

 

It will help prevent the inevitable errors caused by mistyping a command or a pathname. 

Best practices 
When you write Windows shell scripts, you should keep these best practices in mind: 

 

Always test your scripts before you use them in a production environment. 

 

Always document your scripts, even if they appear very simple. When a script encounters the 
keyword REM (for "remark"), it will ignore that entire line. You can therefore use that keyword to 
add remarks to your script for documentation. At the very least, you should include the purpose of 
the script, with the date and the name of the person who created it. Remember that what may 
seem obvious to you at the time may not be obvious to someone else. For that matter, it may not 
even be obvious to you a year from now. 

 

Remember that each command line in your script will be displayed onscreen when it is run, unless 
you turn that feature off with the command @ECHO OFF. 

Moving on 
To really become proficient at creating Windows shell scripts, you need to understand the available 
commands and their syntax. Study the command reference in Windows Help. Take a look at each 
command and see which ones might help you accomplish the tasks you need done. Each command 
has a Related Topics link. Most of those include two additional useful links: one that provides 
examples of that command in use and one that has further notes on the command. 

In addition, you should practice and try out various commands and options as much as possible until 
you become proficient. Don't be afraid to make mistakes (provided you are practicing in a test 
environment). That's the best way to learn about the variables involved in this process.   

FIRST STEPS IN VBS SCRIPTING FOR ADMINISTRATORS

 

Even the most experienced network administrator may find the powerful VBS scripting somewhat 
intimidating. VBS scripting is a subset of Microsoft Visual Basic called Visual Basic Scripting Edition. It 
looks quite different from shell scripting and, in fact, uses a very different concept one that's based 
on objects and methods. 

But network administrators don't have to be master programmers to write effective and useful VBS 
scripts. It's just a matter of taking a few steps into the unknown. I'm going to introduce you to VBS 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 10 of 23 

scripting by discussing the concept of using objects and methods to accomplish a task. We will then 
apply this concept to work with the Windows file system to carry out a simple file management task. 

Objects and methods 
Probably the main reason why VBS code appears so strange to someone who is used to writing batch 
files is that it makes use of a syntax that combines objects and methods to accomplish its tasks. All of 
the common programming concepts are there variables and constants, error trapping, conditional 
processing, and so on. But to get anywhere with VBS, you must start with objects. 

The platform for VBS scripting is the Windows Script Host (Wscript.exe). It comes with a set of tools, 
each of which has specific capabilities. In VBS, a tool is called an object, and the various capabilities 
of a tool are called methods. So to accomplish a task, you combine an object and a method. The way 
this is done in VBS syntax is in a dot format like this: 

object.method 

The root object in the Windows Script Host (WSH) is called Wscript. There are 13 other WSH 
objects, but we don't need to go into those now. The main thing here is to understand the concept of 
using objects and methods to carry out a task. The Microsoft MSDN Web site provides more 
information on the WSH Object Model. 

Introducing FileSystemObject 
The easiest way to understand the use of objects and methods is to become familiar with 
FileSystemObject, the object used to interact with the Windows file system. However, because it is not 
one of the core WSH objects, it can't be used directly. It is actually invoked by WSH from a file called 
the Scripting Runtime Library (%windir%\system32\scrrun.dll). 

Once invoked, FileSystemObject can be used to create, copy, or delete files or folders. You invoke it 
through a process called "instantiating an object," which is basically creating the object and then 
assigning it to a variable. 

We will use the Windows Script Host root object Wscript to create the FileSystemObject object (yes, 
that does sound redundant) and simultaneously assign it to a variable. Here's how. 

One of the methods in the Wscript object is called CreateObject. So using our dot notation, we can 
write Wscript.CreateObject to accomplish our task. We just need to tell it that we want to create the 
FileSystemObject found in the Scripting Runtime Library: 

Wscript.CreateObject("Scripting.FileSystemObject") 

However, that's only half the job of instantiating FileSystemObject; we also have to simultaneously 
assign it to a variable. In programming, a variable is simply a name you give to something so that you 
(and the program) can keep track of it more easily. Since we are creating the FileSystemObject, we 
might use FSO as the variable name. But there are many kinds of items besides objects that can be 
given names. To identify this as the name of an object, we'll adopt Microsoft's recommended naming 
convention and use the variable name objFSO. 

We are now close to the point where we can actually do something. But in Visual Basic, you can't 
use a variable name until you declare it and assign something to it. To declare a variable, we use a 
separate statement with the keyword Dim, like this: 

Dim objFSO 

Then, to assign something to the variable, we use the keyword Set and an equal sign. So the entire 
process of instantiating the FileSystemObject will look like this: 

Dim objFSO 

Set objFSO = Wscript.CreateObject("Scripting.FileSystemObject") 

Using FileSystemObject 
Now that we have instantiated FileSystemObject and assigned it to a variable called objFSO, what can 
we do with it? Remember that objects come with a set of capabilities called methods. We can use 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 11 of 23 

those methods to manipulate the file system if we know the exact syntax. Some of the useful methods 
for FileSystemObject are listed in Table A. 

TABLE A 

CopyFile  Copies files to another location  

DeleteFile  Deletes files  

FileExists  Returns True or False depending on whether the file exists  

MoveFile  Moves files to another location  

CopyFolder  Copies folders to another location  

DeleteFolder 

 

Deletes folders  

FolderExists 

 

Returns True or False depending on whether the folder exists 

 

MoveFolder  Moves folders to another location  

Let's say that we want to write a script that will copy a file named MyFile.txt from a local drive to a 
network share. Good programming technique dictates that we first test to make sure that the file exists 
before we execute the Copy command. Listing A shows how we would do that. 

Once we instantiated the FileSystemObject as objFSO, we were able to invoke two of its methods 
(FileExists and CopyFile) to accomplish a task. We also invoked a Wscript method (Echo) to display a 
message in case of an error. In addition, note that we invoked those methods using the variable name 
objFSO rather than the object name FileSystemObject. 

Of course, the exact syntax is important, such as the If-Then-Else construct and the use of 
parentheses and quotation marks. But the point here is to understand the use of objects and methods 
to accomplish a task. 

Releasing FileSystemObject 
Good programming technique requires you to do one more thing before leaving the VBS script. After 
using objects you have instantiated, you should always release them before ending the script. You do 
that by assigning nothing to the variable name you created literally. Here's what it looks like: 

Set objFSO = Nothing 

So now, if we put the whole thing together and include, as we always should, documenting 
comments, it would look something like Listing B. 

Just the beginning 
As most network administrators know, you could accomplish this same task with a regular batch file or 
shell script. If that were all VBS scripting could do, there wouldn't be much point in taking the trouble to 
learn it. But VBS scripting can ultimately do a great deal more than shell scripting, including reading 
and writing to files, reading and writing to the Registry, creating shortcuts, and assigning icons. Once 
you understand the concept of using objects and methods, you will have taken the first step toward 
mastering this powerful tool.   

IMPROVE ADMINISTRATION BY USING THE SHELL AND NETWORK VBS OBJECTS

 

When you start working with the Windows Scripting Host and VBS scripting, you must understand the 
concept of objects and methods. Previously, I discussed how to instantiate, or create, an instance of 
the FileSystemObject object and use it to manipulate the Windows file system. Now, I'm going to 
discuss two other objects that are important in network admin scripting, WshShell and WshNetwork. 
We'll use these two objects to create shortcuts, write to the registry, and map network drives. 

Object recap 
Objects, which can be thought of as tools, have what we call methods certain things the tools can 
do. In addition, objects have properties. Just as the name implies, properties are characteristics of 
objects and, like methods, can be used to good advantage in VBS. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 12 of 23 

Use the WshShell object to create a shortcut 
To create the Shell object, we use the CreateObject method of WScript: 

Dim objShell 

Set objShell = WScript.CreateObject("WScript.Shell") 

Once the Shell object has been created, it includes the properties and methods shown in Table A. 

TABLE A 

Properties  Methods  

CurrentDirectory 

 

AppActivate  

Environment  CreateShortcut  

SpecialFolders  Exec  

?  ExpandEnvironmentStrings 

 

?  LogEvent  

?  Popup  

?  RegDelete  

?  RegRead  

?  RegWrite  

?  Run  

?  SendKeys  

WshShell object 

Using the Shell object and some of these properties and methods, we are going to create a VBS 
script that will create a shortcut to Notepad on the user's desktop. First, notice that one of the 
properties is called SpecialFolders. This property requires an argument telling it which special folder to 
use, such as MyDocuments, Favorites, or StartMenu. For our script, we'll use Desktop. 

Second, notice that one of the methods for WshShell is CreateShortcut. If you use that method, you 
end up with an object called WshShortcut. Its properties are shown in Table B.  

TABLE B 

Properties  

Arguments  

Description  

Hotkey  

IconLocation  

TargetPath  

WindowStyle  

WorkingDirectory 

 

WshShortcut object 

Where do these properties come from? If you right-click on a shortcut and select Properties from the 
context menu, you'll see something similar to Figure A. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 13 of 23 

FIGURE A 

 

Items in the Properties dialog box correspond to WshShortcut properties. For instance, the Target 
text box corresponds to the TargetPath property in the WshShortcut object. The Run drop-down list 
lets you select either Normal Window, Run Minimized, or Run Maximized. These options are part of 
the WindowStyle property in WshShortcut. The only property we are required to specify is TargetPath. 

Now let's look at how we can create a shortcut with VBS. First, we have to remember that shortcuts 
to files or folders (as opposed to URLs) have the extension .lnk. We will need to specify that we want 
to link to C:\WINNT\notepad.exe and store that link (shortcut) in the user's Desktop folder. Here is 
what we will do: 

1. Instantiate the WshShell object. 
2. Use WshShell to create a shortcut. 
3. Specify where the link is located (using the TargetPath property of WshShortcut). 
4. Save the shortcut. 

Listing A shows how this script will look. 

Note the various uses of parentheses and quotation marks in this script. Note also that in creating 
the shortcut, we specified the target folder using its variable name and concatenated the link name 
using an ampersand (&). In specifying the target path, we used the environment variable %windir%, 
which is normally C:\WINNT. The entire path must be enclosed in quotes. 

Use the WshShell object to work with the registry 
As we saw in Table A, the Shell object contains the following methods: 

 

RegWrite 

 

RegRead 

 

RegDelete 

We can use these methods to manipulate the registry of a machine with a VBS script that is, read, 
write, and delete registry keys and values. The syntax for this is quite simple. Let's say that in the 
HKEY_CURRENT_USER hive (HKCU), we want to create a key with the name "AnewKey" and assign 
to it the value of "NewValue." We would first instantiate the Shell object and then use the RegWrite 
method as follows: 

Dim objShell 

Set objShell = WScript.CreateObject("WScript.Shell") 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 14 of 23 

ObShell.RegWrite "HKCU\AnewKey", "NewValue" 

The same key and value can be removed using the RegDelete method. 

Use the WshNetwork object to map a network drive 
Table C shows the properties and method of the WshNetwork object. We'll use the MapNetworkDrive 
method in this example. 

TABLE C 

Properties  Methods  

ComputerName 

 

AddWindowsPrinterConnection 

 

UserDomain  AddPrinterConnection  

UserName  EnumNetworkDrives  

?  EnumPrinterConnections  

?  MapNetworkDrive  

?  RemoveNetworkDrive  

?  RemovePrinterConnection  

?  SetDefaultPrinter  

WshNetwork object 

Let's say that we want to assign the network share \\Server1\Admin to drive G:. We first instantiate 
the network object and then use the MapNetworkDrive method as follows: 

Dim objNetwork 

Set objNetwork = WScript.CreateObject("WScript.Network") 

ObjNetwork.MapNetworkDrive "G:", "\\Server1\Admin" 

The sky's the limit 
Using the FileSystemObject, Shell, and Network objects and their associated properties and methods, 
you can automate a great many tasks to ease the burden of routine work. 

To learn more about VBS and how you can use the objects, methods, and properties to your 
advantage, check out Microsoft's site for specifics such as the VBS User's Guide and Language 
Reference and references on the individual objects Shell, Network, and FileSystemObject.   

IMPROVE EFFICIENCY OF ADMIN SCRIPTS WITH PROGRAMMING CONSTRUCTS

 

With Windows shell scripting and VBS, you can map network drives, copy files or folders, edit the 
registry, create shortcuts, and perform a host of other useful network administrative tasks. Earlier, I 
alluded to some programming constructs that let you extend the functionality of your scripts. Now it's 
time to take a look at these programming constructs, see how they are used, and examine their syntax 
in both shell scripting and VBS. The constructs I'll discuss are conditional processing, error trapping, 
and iterative processing. 

Conditional processing in Windows shell scripts 
Conditional processing is the ability to have your script test whether a certain condition exists or is 
true, such as determining whether a variable is equal to a string or a specific file is present. Once the 
script determines whether the condition is true or false, it can carry out one command if the condition 
does exist and carry out another command if it does not exist. 

In shell scripting, the conditional processing construct consists primarily of these elements: 

 

IF statement 

 

GOTO statement 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 15 of 23 

 
Labels 

The IF statement is used to test a condition. This statement may include a command to be carried 
out if the condition is true, such as: 

IF %SYSTEMROOT% == "C:\WINNT" COPY new.dll C:\WINNT\SYSTEM32 

You can also include a command to be carried out if the condition is false. To do this, you add an 
ELSE clause to the IF statement: 

IF %USERNAME% == "Johnny" echo "Hello Johnny" ELSE echo "Who are you?" 

In addition, you have the option of branching to another part of the script to carry out a command. 
This is especially useful in more complex processing. To branch, you must include a label, which is 
basically a named place marker in your script. For example, if your script contains commands that 
can't be carried out on a Windows 9x operating system, you might want to test to see that the 
operating system is Windows NT or higher first. If it is not, you do not want to the script to run at all. To 
accomplish this, you could use a label called EXIT and the GOTO statement: 

IF NOT %OS% == "WINDOWS_NT" GOTO EXIT 

[Body of script here] 

GOTO EOF 

:EXIT 

ECHO "You must be using Windows NT or higher." 

A little explanation is called for here. First, note that a colon must precede the label (EXIT) in the 
script and that I used two equal signs (==) instead of one (=). The double equal sign is called a 
comparison operator and must be used with IF statements. I used a GOTO statement to tell the script 
to branch to the label. Remember that the script will carry out each line in order until it reaches the 
end, unless it is told otherwise. This means that if the condition is true, it will still carry out that last 
ECHO statement in the script. Of course, I don't want to echo that message if the condition is true, so I 
used the GOTO EOF (End of File) statement before the EXIT label. This tells the script to end there 
and not carry out any more commands in this case: ECHO"You must be using Windows NT or 
higher." 

You can always use NOT to invert any test for a condition. Thus, in addition to the basic IF 
statement, you can use the following: 

IF (NOT) DEFINED [Tests to determine whether a given variable exists] 

IF (NOT) EXIST [Tests to determine whether a given file or folder exists] 

The Command Reference in Windows Help provides details and notes on using these statements. 

Dealing with errors in Windows shell scripts 
Every time a Windows shell command completes its task, it exits with a specific code. Commands that 
are completed with no errors exit with the code of 0, while any other exit code indicates that an error 
occurred. For instance, say that you execute the following command: 

DEL myfile.txt 

If the file was successfully deleted, the exit code will be 0. But if that file doesn't exist, or if it has a 
read-only attribute, the command can't delete it and the error code will be something other than 0. A 
variable called ERRORLEVEL lets you access that code, and you can use that in conjunction with the 
IF statement to trap errors. Here's an example: 

DEL myfile.txt 

IF NOT ERRORLEVEL 0 GOTO EXIT 

ECHO "File deleted." 

GOTO EOF 

:EXIT 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 16 of 23 

ECHO "Could not delete file." 

Conditional processing in VBS 
In VBS, the syntax for conditional processing is a little different. To execute a straightforward IF 
statement, you type something like this: 

IF condition THEN 

    one or more statements 

END IF 

Notice that you must include the keyword THEN and explicitly end the IF statement. In addition, VBS 
will allow you to include statements that will be executed if the condition is false, as well as statements 
to execute if the condition is true. This is done with the ELSE clause, as shown here: 

IF count = 10 THEN 

     Wscript.echo "Count is ten." 

ELSE 

     Wscript.echo "Count is not ten." 

END IF 

VBS also has a slightly more efficient method of performing conditional processing, known as the 
SELECT CASE statement. It allows the script to evaluate a condition, as you might guess, on a case-
by-case basis. Here's an example: 

SELECT CASE count 

    CASE count = 1 

         Wscript.echo "Count is one." 

    CASE count = 2 

         Wscript.echo "Count is two." 

    CASE count = 3 

         Wscript.echo "Count is three." 

END SELECT 

Iterative processing in shell scripting 
Iterative processing, also called looping, means repeating one or more commands until some goal is 
reached. In shell scripting, the syntax is not as obvious as other constructs and is therefore a little 
harder to learn. For iterative processing you use the FOR DO statement, and the syntax looks like this: 

FOR /switch %%variable in (set) DO command 

The /switch element can be one of four switches: 

 

/l loops through a range of values. 

 

/f loops through or parses a string. 

 

/d loops through the files of a folder. 

 

/r loops through all subfolders. 

The %%variable is any letter of the alphabet, such as %%a or %%z. The FOR command will 
increment the value of this variable each time it passes through the loop. 

Look at how you might use this construct for a network admin task. Suppose that you need to print a 
list of all the subfolders in the C:\WINNT folder. You could do that using a straight shell command such 
as: 

DIR C:\WINNT /AD /S 

The output would look similar to Figure A. 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 17 of 23 

FIGURE A 

 

However, this may not be the most useful format. So l create a script with the following commands: 

@echo off 

FOR /r c:\winnt %%a in (.) do echo %%a > dirlist.txt 

The resulting output, redirected to a text file, will appear similar in format to Figure B. 

FIGURE B 

 

Iterative processing in VBS 
Iterative processing in VBS is frankly more useful and, as an added bonus, the syntax is actually 
easier. Four forms of looping are available in VBS: 

 

DO WHILE will create a loop that continues to process as long as a condition is true. 

 

DO UNTIL will create a loop that continues to process until a condition becomes true. 

 

FOR NEXT will create a loop that executes a specific number of times. 

 

WHILE WEND will create a loop that continues to process as long as a condition is true. 

The WHILE WEND loop is similar to DO WHILE, but it is not used much, due to the general 
popularity of DO WHILE. The basic formats for the other three constructs are: 

DO WHILE condition 

    Repeating commands 

LOOP 

--------------------------------------------------- 

DO UNTIL condition 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 18 of 23 

    Repeating commands 

LOOP 

--------------------------------------------------- 

FOR a = 1 TO 10 

    Repeating commands 

NEXT 

--------------------------------------------------- 

It's important to understand that in both the DO WHILE loop and the DO UNTIL loop, the 
condition must change at some point. Otherwise the loop will never end. The FOR NEXT loop shown 
above will repeat 10 times. 

Be constructive 
Using the programming constructs I have discussed here, you can greatly improve the efficiency and 
functionality of your scripts. You can have your scripts make decisions without your intervention, 
recognize errors and take action based on them, and quickly perform repetitive tasks. As with all 
elements of scripting, developing the skills to use these constructs will take practice, but it will be well 
worth the trouble.   

BEEF UP YOUR ADMIN SCRIPTS WITH THESE EXTRA TOOLS

 

Earlier I mentioned IFMEMBER.EXE, a valuable Windows Resource Kit tool you can use to refine 
login scripts. Microsoft also provides a number of other tools that will help you improve your 
administration scripts. I'm going to show you where to find these tools and introduce a few that you 
may find useful. I'll also tell you about a particularly handy tool called KiXtart, which you can use to 
enhance your scripts. 

Running executables in scripts 
The utilities that Microsoft provides are command line executable files that come with their own syntax. 
To use them, you must first know how to run an executable file within a script. 

Executing a utility within Windows shell scripts is fairly straightforward. You know that you can 
execute a command line program at the command prompt. Since shell scripts are basically a series of 
command line instructions, you can simply include the executable on its own line in the script. If it's not 
in the default path, just include the path as part of the command line. 

For instance, one of the utilities that Microsoft provides is INUSE.EXE, a tool that can replace files 
that are currently in use by the operating system. To run it, you must specify the name of the source 
file and the name of the file to be replaced. For example, you might include a line like this in your 
script: 

"C:\Program Files\Resource Kit\inuse.exe" f:\test1.dll \\SERVERA\Winnt\System32\test1.dll 

It's not quite that easy in Visual Basic Scripting, but it's not too difficult either. First, to run a 
command line utility with a VBS script, you must access the Runmethod within the WshShell Object. 
The syntax for that is: 

Wscript.Run (command, [WindowStyle], [WaitonReturn]) 

In this case, command is the complete command line utility with parameters, WindowStyle is an 
optional parameter that controls the style of the command window, and WaitonReturn is either true or 
false, specifying whether the script should wait until the utility completes processing before continuing 
with the script. Running INUSE.EXE within a VBS script might look something like this: 

Set ObjWS = WScript.CreateObject("WScript.Shell") 

ObjWS.Run ("INUSE.EXE f:\test1.dll \\SERVERA\Winnt\System32\test1.dll", 0,"true") 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 19 of 23 

Head for the tool shed 
So, now that you know how to use these utilities within a script, you need to know where to go to get 
them. The best place to go is the Windows Resource Kit. Both the Windows NT Resource Kit

 
and the 

Windows 2000 Resource Kit have the tools. You can also download many of the individual tools here. 

The Resource Kits generally provide you with not only the executable file, but also with complete 
information on how to use the tools, along with examples. 

Figure A, for instance, shows the syntax for ADDUSERS.EXE, a command line utility you can use 
to create users and groups within a script. 

FIGURE A 

 

The Resource Kits conveniently group the tools by functionality, as shown in Figure B. You can use 
the Search tab if you need to find a specific tool. 

FIGURE B 

 

Table A lists a few of the many Resource Kit tools you might find useful in your scripts for network 
administration. 

TABLE A 

Delprof.exe  Deletes user profiles from a Windows 2000 computer  



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 20 of 23 

Delsrv.exe  Unregisters a service  

Regini.exe  Edits the registry with a script  

Logoff.exe  Automatically logs off when used in an unattended installation 

 
Permcopy.exe 

 
Copies share and file permissions from one share to another  

Now.exe  Stamps current date and time  

Also consider KiXtart 
The Windows Resource Kits also include a great scripting tool called KiXtart. This tool is a logon script 
processor and an enhanced batch scripting language developed for Windows by Ruud van Velsen of 
Microsoft Netherlands. It's free software, but the author calls it CareWare and asks that users donate 
to a charity in lieu of paying a fee for using it. 

You will find documentation for the tool, as well as the actual files for download, at kixtart.org. The 
manual available for download from this site carries 120 pages of extensive documentation. 

The only file required for Windows NT and higher is kix32.exe. With it, you can launch any KiXtart 
script, which is a text file written in the KiXtart scripting language. The language is neither shell 
scripting nor VBS, but a separate scripting language with a great deal of functionality. It can process 
commands based on group membership, and it can be used for mapping drives, editing the registry, 
manipulating the file system, and a lot more. 

Each script file, created with a text editor such as Notepad, is saved with the extension .kix. Let's 
say you create a file and name it myscript.kix. This script can then be run with a simple command like 
this: 

Kix32.exe myscript.kix 

You can execute it at the command prompt or place the command into a Windows shell script. 

End sum 
Now that you know about all of these great tool resources available to you, you can start using them in 
your scripts. You will want to take the time to learn them, of course, as well as practice them 
extensively on a lab network before you use them on a production network. Fortunately, both the 
Resource Kits and KiXtart have good documentation on syntax and usage.   

THESE RESOURCES CAN HELP YOU WRITE ADMIN SCRIPTS

 

A lot of excellent references and tutorials are available to help you learn how to write scripts. If you're 
learning scripting specifically for network administration, however, you should be aware that many 
resources lean heavily on scripting for the Web. Although the scripting languages may be the same, 
such as JScript or VBS, their purposes are different. Network administrators will find that resources 
focusing on Web scripting won't be terribly useful. Thus, I'm going to discuss some of the best books 
and online resources you can use for further study. 

Useful books 
If you go to the Amazon.com

 

Web site and search on the keyword scripting under books, you'll 
probably find more than 80 titles listed. Some of them are for UNIX shell scripting, some cover mainly 
Web scripting, and some deal specifically with scripting for network administration. I'll highlight three of 
the most useful books that I'm familiar with, but there are certainly other good ones out there. 

 

Microsoft Windows Shell Scripting and WSH Administrator's Guide, by Jerry Lee Ford, Jr., Premier 
Press, 2002, ISBN 1-931841-26-8. I really like this one. It covers shell scripting, the Windows 
Script Host, JScript, and VBS, all from the point of view of a network administrator. It's actually one 
of the few I've seen that covers using the FileSystemObject, Shell object, and Network object. It 
gives examples and shows the correct syntax in both JScript and VBS for each one. The section 
on Windows shell scripting is quite comprehensive. 

 

Windows NT Scripting Administrator's Guide, by William R. Stanek, M&T Books, 1999, ISBN 0-
7645-3309-6. This is similar to the first book, in that it covers using both Windows shell scripting 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 21 of 23 

and the Windows Script Host with JScript and VBS. But each book covers various functions in 
slightly different ways, with different examples. If you're having trouble understanding some aspect 
of scripting, it can be useful to go to another source. Often, looking at the two books together can 
lead to a better understanding. 

 
Windows Admin Scripting Little Black Book, by Jesse M. Torres, The Coriolis Group, 2001, ISBN 
1-57610-881-3. This book is quite different from the other two. It is designed to get the network 
administrator up and running quickly for any given task. Instead of offering a progressive tutorial 
on scripting, it is divided into specific functions, such as scripting installations and updates, file 
management, and local and remote system management. Within each functional area, it 
discusses specific actions, such as scripting a silent Windows 2000 service pack installation, and 
provides the specific information you need to create that script. It serves as a nice complement to 
one or both of the first two books. 

Web sites for admin scripters 
As you might expect, Microsoft MSDN maintains a Web site for scripting. A good place to start is the 
Windows Script

 

page, which can lead you into the details of both JScript and VBS. Although most of 
this information applies to scripting for the Web rather than network administration, you'll still find some 
useful information there such as the detailed documentation on how to use the FileSystemObject 
object in VBS. 

In addition to Microsoft, there are several other good sites that can help you learn Windows 
scripting. Make sure you take a look at these four: 

 

Windows Scripting Solutions

 

(hosted by Windows and .NET Magazine) First, I should point out 
that to access the full content of this site, you must subscribe to its periodical, Windows Scripting 
Solutions, for $129 in the U.S. or $135 outside the U.S. With that caveat, this site does offer 
excellent content in the form of useful articles concerning all aspects of scripting. In addition, you 
can download code to use in your own scripts. 

 

LabMice.net This site is not strictly devoted to scripting but covers all the aspects involved in 
supporting and working with a Microsoft network. It's free but requests a donation if you find the 
site useful. The site serves as a knowledge base that indexes Microsoft, third-party articles, and 
white papers, and it provides links to other sites that host information you might find helpful. 

 

Windows & .NET Magazine Scripting 101 Series This four-part series was written several years 
ago, but it remains an excellent guide for learning the ins and outs of the Windows Script Host and 
VBS, along with some good code examples. 

 

WinGuides Scripting Guide for Windows This site allows you to access it for free or pay for 
premium access. It offers reference information for scripting concepts and techniques, including 
some excellent code samples. 

Sticking to the script 
Plenty of good information is out there to help you learn and improve scripting skills for network 
administration, but you need to know how to sort it out from all the information that's geared toward 
Web scripting. Once you do, the key will be to just roll up your sleeves and get to work on it. Dig in and 
write scripts and test them in a lab environment and don't be afraid to make mistakes.   

LISTINGS

 

First steps in VBS scripting for administrators 

Listing A  

Dim objFSO 
 Set objFSO = CreateObject("Scripting.FileSystemObject") 
 If (objFSO.FileExists("C:\MyFolder\MyFile.txt ")) Then 
       objFSO.CopyFile "C:\MyFolder\MyFile.txt", "\\Server1\SharedFolder\MyFile.txt" 
 Else 
       WScript.Echo("Unable to locate file") 
 End if 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 22 of 23 

Listing B 

'Script to copy MyFile.txt to network share 
 '=============================================================== 
 ' Instantiate FileSystemObject 
 '=============================================================== 
 Dim objFSO 
 Set objFSO = CreateObject("Scripting.FileSystemObject") 
 '=============================================================== 
 ' Test for existence of MyFile.txt and copy if exists 
 '=============================================================== 
 If (objFSO.FileExists("C:\MyFolder\MyFile.txt ")) Then 
       objFSO.CopyFile "C:\MyFolder\MyFile.txt", "\\Server1\SharedFolder\MyFile.txt" 
 Else 
       WScript.Echo("Unable to locate file") 
 End if 
 '=============================================================== 
 ' Release FileSystemObject 
 '=============================================================== 
 Set objFSO = Nothing 
 Wscript.Quit 

Improve administration by using the Shell and Network VBS objects 

Listing A  

' This script will create a shortcut to Notepad in the user's desktop folder 
' *************************** 
' Instantiate the Shell object 
' *************************** 
Dim objShell 
Set objShell = WScript.CreateObject("WScript.Shell") 
' *************************** 
' Reference the target folder 
' *************************** 
Dim targetfldr 
Set targetfldr = objShell.SpecialFolders("Desktop") 
' *************************** 
' Use the WshShell CreateShortcut method to create the shortcut 
' and specify the TargetPath property 
' *************************** 
Dim shrtcut 
Set shrtcut = objShell.CreateShortcut(targetfldr & "\Notepad.lnk") 
Shrtcut.TargetPath = "%windir%\notepad.exe" 
' *************************** 
' Save the shortcut 
' *************************** 

Shrtcut.Save   

APPENDIX

 

TechRepublic Books and CDs: 
Quick Reference: Server Commands Pak

 

Cisco Router Administration Smart Pak

 

Network Administrator's Tool Kit

 

Network Administrator's Resource Kit

 

Downloads: 
Example scripts for Windows Script Files

 



 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Dr. P.G.Gyarmati windowsscriptingguide.doc Page 23 of 23 

AdminRepublic scripting primer

 
Windows Script Host ClipText library files

 
The Network Address Inventory script

 
Network Monitor Capture Utility script

 
Articles and Columns: 
Improve efficiency of admin scripts with programming constructs

 

Script helps identify processes displayed by Windows Task Manager

 

Customize logon scripts with KiXtart 2001

 

Check network status with this Perl script

 

Protect your scripts with the Script Encoder

 

Segments 
TechRepublic communities engage IT professionals in the ultimate peer-to-peer experience, providing 
actionable information, tools, and member services to help members get their jobs done. 
TechRepublic serves the needs of the professionals representing all segments of the IT industry, 
providing information and tools for decision support and professional advice by job function. 
CIO Republic:

 

Get analysis and insight on e-business, leadership, executive career, business 
strategy, and technology. 
IT Manager Republic:

 

Access technology insights, project management and personal management 
tips, and training resources. 
NetAdmin Republic:

 

Get tips on Windows, NetWare and Linux/UNIX administration, infrastructure 
design and network security. 
Support Republic:

 

Obtain detailed solutions to desktop hardware, software, and end-user support 
problems. 
IT Consultant Republic:

 

Find information and advice on client and vendor relations, project 
management and technology. 

TechRepublic site features 
Free e-newsletters:

 

Keep up-to-date on any aspect of the IT industry with TechMails--from tech 
stocks to daily software tips, from IT careers to hot trends--delivered right to your e-mail Inbox. 
Free downloads:

 

We've collected resources to make your job easier, including ready-to-use IT forms 
and templates, checklist, tools, executables, Gartner product analysis, and other white papers. 
TechRepublic's books and CDs:

 

Find the latest books and CDs available about today's critical IT 
topics including: PC Troubleshooting, VPN, TCP/IP, Windows Client & Server, Cisco and more.  
Discussion center:

 

Open a discussion thread on any article or column, or jump into pre-selected 
topics: career, technology, management, and miscellaneous. The fully searchable Discussion Center 
brings you the hottest discussions and threads, and allows you to sort them by topic and Republic. 
Try our premium subscription product, TechProGuild, free for 30 days.

 

Our online IT community 
provides proven, real-world solutions and the latest articles resources, and discussions affecting 
frontline IT pros. Get access to over 250 full-text IT books, exclusive downloads, in-depth articles on 
network and system, PC troubleshooting, networking and Cisco infrastructure information, help desk 
and support, and more! 

_________ 


