
The TCC Research Project 1

TRANSACTIONAL MEMORY COHERENCE AND
CONSISTENCY (TCC)

TABLE OF CONTENTS

1 INTRODUCTION.. 3
2 SYSTEM OVERVIEW.. 6

Figure 1: A sample 3-node TCC system. 6
2.1 Programming Model.. 9

Figure 2: Timing illustration of how transactions........... 11
2.2 Basic TCC System... 13
3 RELATED WORK.. 16
3.1 Database Transaction Processing 16
3.2 Previous Work in Transactions and TLS 17
4 TCC IMPROVEMENTS... 19
4.1 Double Buffering.. 19

Figure 3: The effect of double buffering: 20
4.2 Hardware-Controlled Transactions 21
4.3 Localization of Memory References............................ 23
4.4 I/O Handling... 24
5 SIMULATION METHODOLOGY 24

Some applications analyzed for transactional behavior. 26
6 SIMULATION RESULTS .. 28
6.1 Limits of Available Parallelism 28

Figure 4: Speedups for varying numbers of processors . 28
Figure 5: Distribution of execution time.......................... 29

6.2 Buffering Requirements for Typical Transactions 30
Figure 6: State read by individual transactions............... 30
Figure 7: Same as Fig. 6, but for write state..................... 31

The TCC Research Project 2

6.3 Limited Bus Bandwidth... 33
Fig. 8 shows the average number of addresses....................... 33
Fig. 9. the amount of data being broadcast 34
Fig. 10 write through-based mechanism 35

6.4 Other Limited Hardware... 35
Fig. 11. full cache line committed per cycle..................... 36
Fig. 12. overhead required for commit arbitration 37

7 CONCLUSIONS .. 39
8 REFERENCES.. 40

The TCC Research Project 3

1 INTRODUCTION

Parallel processors have become increasingly common and
more densely packed in recent years. In the near future, these
systems will provide many conventional processors packed
together into chip multiprocessors (CMPs) or single-board
systems interconnected with some form of high-bandwidth
communication bus or network. With these systems, enough
bandwidth can be provided between processors to even allow
the broadcast of significant amounts of data and/or protocol
overhead between all of the processor nodes over a low-
latency unordered interconnect [4, 5, 7, 19, 24, 26].
Overwhelmingly, designers of today�s parallel processing
systems have chosen to use one of two common models to
coordinate communication and synchronization in their
systems: message passing or shared memory. Given the
advent of newer systems with immense interprocessor
bandwidth, however, we wondered if it would be possible to
take advantage of this bandwidth to simplify the protocols
used to manage communication and synchronization between
processors in a system.

Message-passing is a system that supports relatively simple
hardware configurations, such as clusters of workstations, but
makes programmers work hard to take advantage of the
hardware. The programming model is one of many
independent nodes that must pass explicit messages between
each other when communication is necessary. Messages also
implicitly synchronize processors as they are sent and
received. This technique typically makes the underlying

The TCC Research Project 4

hardware much simpler by making programmers concentrate
their communication into a relatively small number of large
data packets that can flow throughout the system with
relatively relaxed latency requirements. To facilitate this,
programmers must divide data structures and execution into
independent units that can execute efficiently on individual
processor nodes.

In contrast, shared memory adds additional hardware to
provide programmers with an illusion of a single shared
memory common to all processors, avoiding or minimizing
the problem of manual data distribution. This is accomplished
by tracking shared cache lines as they move throughout the
system either through the use of a snoopy bus-coherence
protocol over a shared bus [13, 28] or through a directory-
based coherence mechanism over an unordered interconnect
[3, 23]. Programmers must still divide their computation into
parallel tasks, but all tasks can work with a single, common
dataset resident in memory. While this model significantly
reduces the difficulty inherent in parallel programming,
especially for programs that exhibit dynamic communication
or fine grain sharing, the hardware required to support it can
be very complex [7]. In order to provide a coherent view of
memory, the hardware must track where the latest version of
any particular memory address can be found, recover the
latest version of a cache line from anywhere on the system
when a load from it occurs, and efficiently support the
communication of large numbers of small, cache-line-sized
packets of data between processors. All this must be done
with minimal latency, too, since individual load and store
instructions are dependent upon each communication event.
Achieving high performance despite the presence of long
interprocessor latencies is therefore a problem with these

The TCC Research Project 5

systems. Further complicating matters is the problem of
sequencing the various communication events constantly
passing throughout the system on the granularity of
individual load and store instructions. Unfortunately, shared
memory does not provide the implicit synchronization of
message passing, so hardware rules — memory consistency
models [1] — have been devised and software synchronization
routines have been carefully crafted around these rules to
provide the necessary synchronization. Over the years, the
memory consistency model has progressed from the easy-to-
understand but sometimes performancelimiting sequential
consistency [12, 22] to more modern schemes such as relaxed
consistency [2, 9, 11]. The complex interaction of coherence,
synchronization and consistency can potentially make the job
of parallel programming on shared memory architectures
difficult.

Both of these models therefore have drawbacks — message
passing makes software design difficult, while shared memory
requires complex hardware to get only a slightly simpler
programming model. Ideally, we would like a communication
model that, without raising memory consistency issues,
presents a shared memory model to programmers and
significantly reduces the need for hardware to support
frequent, latency-sensitive coherence requests for individual
cache lines. At the same time, we would like to be able to take
advantage of the inherent synchronization and latency-
tolerance of message passing protocols. Replacing
conventional, cache-line oriented coherence protocols and
conventional shared memory consistency models with a
Transactional memory Coherence and Consistency (TCC) model
can accomplish this.

The TCC Research Project 6

2 SYSTEM OVERVIEW

Processors such as those in Fig. 1 operating under a TCC
model continually execute speculative transactions.

Figure 1: A sample 3-node TCC system.

A transaction is a sequence of instructions that is guaranteed
to execute and complete only as an atomic unit. Each
transaction produces a block of writes called the write state
which are committed to shared memory only as an atomic
unit, after the transaction completes execution. Once the

The TCC Research Project 7

transaction is complete, hardware must arbitrate system-wide
for the permission to commit its writes. After this permission
is granted, the processor can take advantage of high system
interconnect bandwidths to simply broadcast all writes for the
entire transaction out as one large packet to the rest of the
system. Note that the broadcast can be over an unordered
interconnect, with individual stores separated and reordered,
as long as stores from different commits are not reordered or
overlapped. Snooping by other processors on these store
packets maintains coherence in the system, and allows them to
detect when they have used data that has subsequently been
modified by another transaction and must rollback — a
dependence violation. Combining all writes from the entire
transaction together minimizes the latency sensitivity of this
scheme, because fewer interprocessor messages and
arbitrations are required, and because flushing out the write
state is a one-way operation. At the same time, since we only
need to control the sequencing between entire transactions,
instead of individual loads and stores, we leverage the commit
operation to provide inherent synchronization and a greatly
simplified consistency protocol.
This continual speculative buffering, broadcast, and
(potential) violation cycle, illustrated in Fig. 3a, allows us to
replace conventional coherence and consistence protocols
simultaneously:

Consistence: Instead of attempting to impose some sort of
ordering rules between individual memory reference
instructions, as with most consistency models, TCC just
imposes a sequential ordering between transaction commits.
This can drastically reduce the number of latency-sensitive
arbitration and synchronization events required by low-level
protocols in a typical multiprocessor system. As far as the

The TCC Research Project 8

global memory state and software is concerned, all memory
references from a processor that commits earlier happened
“before” all memory references from a processor that commits
afterwards, even if the references actually executed in an
interleaved fashion. A processor that reads data that is
subsequently updated by another processor�s commit, before
it can commit itself, is forced to violate and rollback in order to
enforce this model. Interleaving between processors� memory
references is only allowed at transaction boundaries, greatly
simplifying the process of writing programs that make fine-
grained access to shared variables. In fact, by imposing an
original sequential program�s original transaction order on
the transaction commits, we can effectively let the TCC system
provide an illusion of uniprocessor execution to the sequence of
memory references generated by parallel software.

Coherence: Stores are buffered and kept within the processor
node for the duration of the transaction in order to maintain
the atomicity of the transaction. No conventional, MESI-style
cache protocols are used to maintain lines in “shared” or
“exclusive” states at any point in the system, so it is legal for
many processor nodes to hold the same line simultaneously in
either an unmodified or speculatively modified form. At the
end of each transaction, the broadcast notifies all other
processors about what state has changed during the
completing transaction. During this process, they perform
conventional invalidation (if the commit packet only contains
addresses) or update (if it contains addresses and data) to keep
their cache state coherent. Simultaneously, they must
determine if they may have used shared data too early. If they
have read any data modified by the committing transaction
during their currently executing transaction, they are forced to
restart and reload the correct data. This hardware mechanism

The TCC Research Project 9

protects against true data dependencies automatically,
without requiring programmers to insert locks or related
constructs. At the same time, data antidependencies are
handled simply by the fact that later processors will
eventually get their own turn to flush out data to memory.
Until that point, their “later” results are not seen by
transactions that commit earlier (avoiding WAR
dependencies) and they are able to freely overwrite previously
modified data in a clearly sequenced manner (handling WAW
dependencies in a legal way). Effectively, the simple,
sequentialized consistence model allows the coherence model
to be greatly simplified, as well.

Although some of the details and implementation alternatives
add more complexity, this simple cycle is the backbone of the
TCC system and underlies all other descriptions of the system
throughout the rest of this paper.

2.1 Programming Model
For programmers, there is really only one requirement for
successful transactional execution: the programmer must
insert transaction boundaries into their parallel code
occasionally (possibly with some hardware aid, see Section
4.2). No complex sequences of special instructions such as
locks, semaphores, or monitors are ever necessary to control
low-level interprocessor communication and synchronization.
In many respects, this model is very similar to the technique of
performing manual parallelization with assistance from
thread-level speculation (TLS, see Section 3.2) hardware that
we previously investigated in [29]. There is only one hard rule
that programmers must keep in mind. Transaction breaks
should never be inserted during the code between a load and

The TCC Research Project 10

any subsequent store of a shared value (i.e. during a
conventional lock�s critical region). Unlike with conventional
parallelization, other “errors” will only cause reduced
performance, instead of incorrect execution.

As a result of this model, parallelizing code with TCC is a very
different process from conventional parallel programming
because it allows programmers to make intelligent tradeoffs
between programmer effort and performance. Basic
parallelization can quickly and easily be done by identifying
potentially interesting transactions, and then programmers
can use feedback from runtime violation reports to refine their
transaction selection in order to get significantly greater
speedups. In a simplified form, parallel programming with
TCC can be summarized as a threestep process:

Divide into Transactions: The first step in the creation of a
parallel program using TCC is to coarsely divide the program
into blocks of code that can run concurrently on different pro-
• cessors. This is similar to conventional parallelization, which
also requires that programmers find and mark parallel
regions. However, the actual process is much simpler with
TCC because the programmer does not need to guarantee that
parallel regions are independent, since the TCC hardware will
catch all dependence violations at runtime.

Specify Order: The programmer can optionally specify an
ordering between transactions to maintain a program order
that must be enforced. By default, no order is imposed
between the commits of the various transactions, so different
processors may proceed independently and commit as they
encounter end-of-transaction instructions. However, most
parallel applications have places where certain transactions

The TCC Research Project 11

must complete before others. This situation can be addressed
by assigning hardware-managed phase numbers to each
transaction. At any point in time, only transactions from the
“oldest” phase present in the system are allowed to commit.
Transactions from “newer” phases are simply forced to stall
and wait if they complete before all “older” phases have
completed.

Figure 2: Timing illustration of how transactions
(numbered blocks) running on three different processors are

forced to commit by phase number sequence.

Fig. 2 illustrates how most important transaction sequencing
events can be handled using phase numbers. The top half of
the figure shows groups of unordered transactions, for which
we simply keep the phase numbers identical. To form a
barrier, all processors increment the phase number of
transactions by 1 as they cross the barrier point, so that all pre-
barrier transactions are forced to commit before any post-
barrier transactions can complete. To parallelize sequential

The TCC Research Project 12

code in a TLS-like fashion, we simply increment the phase
number by 1 for each transaction created from the original
sequential code, as is illustrated in the bottom half of Fig. 2.
This forces the commits to occur in-order, which in turn
guarantees that the parallel execution will mimic the
load/store behavior of the original program. In addition to
being easy to implement in hardware, this scheme is also
guaranteed to be deadlockfree, since at least one processor is
always running the “oldest” phase, and therefore able to
commit when it completes. Also, in order to allow several
phase-progression sequences to occur simultaneously in
different parts of the system, we could add an optional
sequence number to the hardware in order to separate out these
different groups of phasings.

Performance Tuning: After transactions are selected and
ordered, the program can be run in parallel. The TCC system
can automatically provide informative feedback about where
violations occur in the program, which can direct the
programmer to perform further optimizations. These
optimizations usually improve code by making it follow these
guidelines:
1. Transactions should be chosen to maximize parallelism and
minimize the number of inter-transaction data dependencies.
A few occasional violations are acceptable, but regularly
occuring ones will largely eliminate the possibility for
speedup in most systems.
2. Large transactions are preferable, when possible, as they
amortize the startup and commit overhead time better than
small ones, but
3. Small transactions should be used when violations are
frequent, to minimize the amount of lost work, or when large

The TCC Research Project 13

numbers of memory references tend to overflow the available
memory buffering.

This streamlined parallel coding model therefore allows
parallel programmers to focus on providing better
performance, instead of spending most of their time simply
worrying about correctness.

2.2 Basic TCC System
TCC will work in a wide variety of multiprocessor hardware
environments, including a variety of CMP configurations and
smallscale multichip multiprocessors. TCC cannot scale
infinitely, for two reasons. First, TCC requires system-wide
arbitration for the commit permission, either through a
centralized arbiter or distributed algorithm. Second, TCC
relies on broadcast to send the commit packets throughout the
system. The algorithm is currently dependent upon some form
of broadcast, although we examine some mechanisms to
reduce bandwidth requirements in Section 6.3. Our scheme
can work within any system that can support these two
requirements in an efficient manner.

Individual processor nodes within a TCC system must have
some features to provide speculative buffering of memory
references and commit control, as was illustrated in Fig. 1.
Each “node” consists of a processor core plus its own local
cache hierarchy. The exact structure of the local cache
hierarchy makes no difference to the coherence scheme, as
long as all of the included lines maintain the following
information in some way:
Read bits: These bits are set on loads to indicate that a cache
line (or portion of a line) has been read speculatively during a

The TCC Research Project 14

transaction. These bits are snooped while other processor
nodes commit to determine when data has been speculatively
read too early. If a write committed by another processor
modifies an address cached locally with its read bit set, then a
violation has been detected and the processor is interrupted so
that it can revert back to its last checkpoint and start re-
executing from there. In a simple implementation, one read bit
per line is sufficient. However, it may be desirable to include
multiple bits per line in order to eliminate false violation
detections caused by reads and writes to different words in
the same line.

Modified bit: There must be one for every cache line. These
are set by stores to indicate when any part of the line has been
written speculatively. These are used to invalidate all
speculatively written lines at once when a violation is
detected.

In addition, we can optionally include an extra set of bits in
each cache line to help avoid false violations that could be
caused by reads and writes to the same part of a cache line:

Renamed bits: These optional bits must be associated with
individual words (or even bytes) within each cache line. They
act much like “modified” bits, except that they can only be set
if the entire word (or byte) is written by a store, instead of just
any part of the associated region. Because individual stores
can typically only write a small part of a cache line at a time,
there must almost always be a large number of these bits for
each line. If set, any subsequent reads from these words
(bytes) do not need to set read bits, because they are
guaranteed to only be reading locally generated data that
cannot cause violations. Since these bits are optional, they can

The TCC Research Project 15

be omitted entirely or only partially implemented (for
example, in a node’s L1 cache but not in its L2).

Cache lines with set read or modified bits may not be flushed
from the local cache hierarchy in mid-transaction. If cache
conflicts or capacity constraints force this to occur, the
discarded cache lines must be maintained in a victim buffer
(which may just hold the tag and read bit(s) if a line is
unmodified) or the processor must be stalled temporarily. In
the latter case, it must request commit permission, a process
that may take some time if processors with “older” phases are
present, and then hold this permission until the transaction
completes execution and commits. This solution works
because read and modified bits do not need to be maintained
once commit permission has been obtained, as all “earlier”
commits will have been guaranteed to complete at that point.
However, since holding the commit permission for extended
periods of time can have a severely detrimental impact on the
overall system performance, it is critical that this mechanism
only be used for infrequent, very long transactions.

The processor core must also have a way to checkpoint its
register state at each commit point in order to provide rollback
capabilities. This could be done either in hardware, by flash-
copying the register state to a shadow register file at the
beginning of each transaction, or in software, by executing a
small handler to flush out the live register state at the start of
each transaction. The hardware scheme could be incorporated
into traditional register renaming hardware by flash-copying
the register rename tables instead of the registers themselves.
The software scheme would not require any modifications of
the core at all, but such a scheme would obviously incur a
higher overhead on the processor core at each commit.

The TCC Research Project 16

Finally, the node must have a mechanism for collecting all of
its modified cache lines together into a commit packet. This
can be implemented as a write buffer completely separate
from the caches or as an address buffer that maintains a list of
the line tags that contain data that needs to be committed. We
shall examine the size of write state to determine the amount
of hardware that would be required to implement a typical
write buffer beside the caches. The interface between this
buffer and the system network should have a small “commit
control” table that tracks the state (phase numbers) of other
processors in the system in order to determine when it is
within the “oldest” phase and free to arbitrate for commits.
This simple mechanism can eliminate a great deal of spurious
arbitration request traffic.

3 RELATED WORK

This paper draws upon ideas from two existing bodies of
work, database transaction processing systems and thread-
level speculation (TLS), and applies them to the field of cache
coherent, shared memory parallel architectures. This section
compares TCC with some key ideas from these two fields of
knowledge.

3.1 Database Transaction Processing
Transactions are a core concept in database management
systems (DBMS) that provide significant benefits to the
database programmer [15]. In DBMS, transactions provide the
properties of atomicity, consistency, isolation, and durability

The TCC Research Project 17

(ACID). We have borrowed the fully transactional
programming model from databases because we think that
these properties will greatly simplify the development of
generic parallel programs. The main difference between the
transactions defined by the database programmer and those
used by parallel programmers is size. The number of
instructions executed and the amount of state generated by
most parallel program transactions is much smaller than those
used in database transactions. Therefore, a key element to
using transactions for general purpose parallel programming
is an efficient, hardware-based transaction execution
environment.

The designers of DBMS have explored a wide range of
implementation options for executing transactions while
providing high transaction throughput. The work on
optimistic concurrency [21] is the most relevant to the ideas
we explore in this paper. Optimistic concurrency controls
access to shared data without using locks by detecting
conflicts and backing up transactions to ensure correct
operation. In transactional coherence and consistency we
extend the ideas of optimistic concurrency from DBMS to
memory system hardware.

3.2 Previous Work in Transactions and TLS
From the hardware side, the origin of this work was in the
early transactional memory work done by Herlihy [17] a
decade ago. Our transactions have identical semantics to the
model proposed in this paper. However, they proposed only
using transactions occasionally, replacing only the critical
regions of locks. As a result, it was more of an adjunct to
existing shared memory consistency protocols than a complete

The TCC Research Project 18

replacement. By running transactions at all times, instead of
just occasionally, we are able to use the same concepts to
completely replace conventional coherence and consistency
techniques. However, the larger number of transaction
commits in our model puts a great deal of pressure on
interprocessor communication bandwidth, so practically
speaking it would have been difficult to implement a model
like ours a decade ago.

Our work also draws upon the wide variety of thread-level
speculation (TLS) literature that has been published over the
course of the past several years from the Multiscalar project
[33], Stampede [36], Torrellas at the University of Illinois [20],
and the Hydra project [16]. In fact, a TCC system can actually
implement a very loosely coupled TLS system if all
transactions are ordered sequentially. In this respect, it most
closely resembles the Stampede design of a TLS system, as
their TLS threads only flush out data from the cache to global
memory at the end of each thread, much like our commits.
However, Stampede layers the TLS support on top of a
conventional cache coherence protocol. The other TLS systems
provide much tighter coupling between processors and more
automatic forwarding of data between executing threads, and
are thereby further removed from TCC. As long as forwarding
of data between speculative threads is not critical for an
application, however, TCC�s performance in “all ordered
transaction” mode can actually be competitive with these
dedicated TLS designs.

Looking at the proposed hardware implementations, our
example implementation is most similar to the Stampede or
Hydra designs in its focus on a multiprocessor with a few
flash-clearable bits attached to the private caches. However,

The TCC Research Project 19

we chose this example design solely because it is an easy first
step. A buffering scheme such as the ARB [10] or SVC [14], as
proposed by the Multiscalar group, would also be able to
handle the speculative buffering tasks required by TCC.

Comparisons can also be made between TCC and other
proposals to adapt speculative mechanisms to improve the
performance of conventional parallel programming models.
For example, Martinez and Torrellas [25], Rajwar and
Goodman [30, 31], and Rundberg and Stenstrom [32] have
independently proposed how to speculate through locks and
past barriers in recent papers. TCC performs both of these
operations during normal operation. All execution now
consists of transactions that can speculate through one or
several different conventional locks at once, while speculation
past phase barriers can occur if the implementation of TCC is
double-buffered.

4 TCC IMPROVEMENTS

The basic protocols used to construct a TCC system and how
they compare with existing coherence and consistency
protocols are presented here. There are extensions and
improvements to these basic protocols that could improve
performance or reduce the bandwidth requirements of TCC in
a real system environment. Let’s see some of these potential
improvements.

4.1 Double Buffering
Double buffering implements extra write buffers and
additional sets of read and modified bits in every cache line,

The TCC Research Project 20

so that successive transactions can alternate between sets of
bits and buffers. This mechanism allows a processor to
continue working on the next transaction even while the
previous one is waiting to commit or committing, as is
illustrated in Fig. 3 for several combinations.

Figure 3: The effect of double buffering:

 a) a sample transaction timeline, b) double buffering of all
speculative state, c) double buffering for write buffer but

not read bits in cache, and d) pure single buffering.

The TCC Research Project 21

In addition, this extension automatically lets processors that
arrive at barriers early continue to speculate past them, as in
[25, 30, 31, 32], without any additional hardware or API
considerations.

The major expense of this scheme is in replicating additional
sets of speculative cache control bits and write buffers. Adding
buffers probably will not scale well past one additional set, but
that first set (providing double buffering) should provide most
of the potential benefit. If hardware register checkpoints are
used, then additional sets of shadow registers would also be
required to allow checkpoints to be taken at the beginning of
each speculative transaction supported by hardware. Only one
copy of the optional renamed bits is ever necessary, since
these do not serve any further function after a transaction
finishes executing instructions. All of these special bits should
be flash-clearable at the end of transactions, to avoid tying up
the hardware for many cycles on each commit, and it is also
helpful if the modified bits can flashinvalidate their lines
when the transaction aborts on a violation. More sophisticated
versioning protocols, similar to those used in the SVC
implementation of buffering for TLS [14], could be used to
eliminate many of these circuit design issues, but we believe
that flash-clearable bits are feasible in tag SRAMs.

4.2 Hardware-Controlled Transactions
In the base TCC system, programmers explicitly mark all
transaction boundaries. However, it is also possible for
hardware to play a role in marking transaction boundaries or
sequencing the transaction commits once they have been
initiated. There are three situations where hardware assistance
would be helpful.

The TCC Research Project 22

Hardware could divide program execution into transactions
automatically as the speculative buffers overflow. This could
achieve the optimal transaction size by not letting transactions
get so large that buffering becomes a problem, while keeping
them large enough to minimize the impact of any commit
overhead. The most common situation when this might be
helpful is for code that divides “naturally” into very large
transactions, but when these transactions can be freely
subdivided into smaller transactions. This is a common
situation in programs that have already been parallelized in a
conventional manner. While it is fairly easy for a software
programmer to insert extra commit points into the middle of
these transactions in order to keep the speculative buffering
requirements manageable, it would be simpler for hardware
to automatically insert transaction commits whenever the
speculative buffers are filled, thereby automatically breaking
up the large transaction into transactions that are sized
perfectly for the available speculative buffer sizes. The only
limitation on this technique is that it no longer guarantees
atomic execution semantics within the large transaction, as the
hardware is free to insert an extra transaction commit point
anywhere. This limitation can be overcome, however, by
allowing programmers to explicitly mark the critical regions
within the large transaction where hardware cannot insert
commits. If the buffers overflow within these regions, then the
processor acquires commit permission early and holds it until
the end of the “atomic region,” when it finally inserts a
commit.
Instead of breaking large transactions into smaller ones, we
might also want to have the hardware automatically merge
small transactions together into larger ones. This would allow
us to automatically gain some of the advantages of larger

The TCC Research Project 23

transactions, but at the potential risk of having the hardware
merge critical transactions that need to complete and
propagate results quickly.

Another useful way that hardware could interact with
transactions is to occasionally insert “barriers” into long
stretches of unordered transactions. This would simply consist
of incrementing the phase number assigned to all new
transactions, even if the software does not request a barrier
explicitly. These occasional pseudobarriers would force all
currently executing transactions to commit before allowing the
system to progress further, effectively forcing all processors to
make forward progress. Without this mechanism there is the
possibility of starvation: a long transaction that makes no
forward progress because it gets into an infinite loop of
violations and restarts.

4.3 Localization of Memory References
One of the assumptions made so far is that all loads and stores
must be speculatively buffered and broadcast throughout the
system. However, it is often possible for programmers or
compilers to give hints to the hardware that could reduce the
need for buffering and, especially, for broadcast. For example,
one way to reduce bandwidth is by marking some loads and
stores as “local” ones that do not need to be broadcast. We
applied this optimization to stack references in our analysis,
because these references are guaranteed to be local within
processors in most parallel systems, and do not need to be
snooped by other processors. However, there are also other
data structures that might be known as “local-only” to the
programmer and/or compiler. These data structures could be
marked either by locating them together in memory pages

The TCC Research Project 24

marked by the OS as “local-only” or by accesses using special
“load local” and “store local” opcodes. Either would allow the
hardware to filter out these local references and, while still
marking any changes for speculative rollback if necessary,
avoid adding them to the list of data to be broadcast.

4.4 I/O Handling
A TCC system can handle I/O very easily. The key constraint
is that a transaction cannot violate and rollback after input is
obtained. When an attempt is made to read input, the current
transaction immediately requests commit permission, just as if
a buffer had overflowed. The input is only read after commit
permission is obtained, when the transaction is guaranteed to
never roll back. Outputs that require writes to occur in a
specific order (like a network interface) can use a similar
“pseudo-overflow” technique to force the writes to propagate
out from the processor immediately, as stores are made. On
the other hand, outputs that can accept potentially reordered
writes (such as a frame buffer) may simply be updated at
commit time, along with normal memory writes, thereby
allowing higher performance. As a result, existing I/O
handlers will work on TCC systems, although it will probably
improve performance if transaction breakpoints are carefully
placed within them. “Pseudo-overflows” to end transactions
prematurely may also be helpful when events such as system
calls and exceptions occur, but this is not necessarily required.

5 SIMULATION METHODOLOGY

As this paper is an initial evaluation to determine the overall
potential of TCC, we chose to simulate a variety of parallel

The TCC Research Project 25

integer and floating point benchmarks using a simplified
hardware model that included many adjustable parameters to
model a wide range of potential implementations of TCC
systems. Our selection of applications and their associated
datasets are summarized in Table 1. These applications come
from a wide variety of different application domains: hand
parallelized SPLASH-2 [38] programs, several floating point
SPEC95 and 2000 [34] benchmarks parallelized semi-
automatically with help from either a compiler (for Fortran) or
TLS (for C), the SPECjbb transaction processing benchmark
[34], and a variety of Java programs parallelized using
automated TLS techniques [8] while running on the Kaffe JVM
[37]. We parallelized the SPECjbb benchmark within only one
of its warehouses, a more difficult task than the usual
technique of parallelizing between warehouses, in order to
demonstrate how TCC can replace complex locking structures.

Source Prog

ram Summary Dataset Parallelization

SPEC200
0 FP [34] art image recognition

/ neural nets Reference TLS loops +
manual fixes

 equa
ke

seismic wave
simulation Reference TLS loops +

manual fixes

 swi
m

shallow water
model

256x256 grid,
4 iterations compiler

SPEC95
FP [34]

tomc
atv

vectorized mesh
generation

256x256 grid,
5 iterations compiler

SPLASH2
[35; 38] lu dense matrix

factorization
256x256,

blocksize=16 all manual

 radix radix sort 256K integers,
radix 1024 all manual

 wate
r-N2

N-body molecular
dynamics 125 molecules all manual

SPECjbb2
000 [34]

SPE
Cjbb

transaction
processing

1 warehouse,
230 iterations all manual

The TCC Research Project 26

Source Prog
ram Summary Dataset Parallelization

Java
Grande

[18]
euler flow equations in

irregular mesh 33x9 mesh automated,
TLS-based

 fft FFT kernel 1024 samples automated,
TLS-based

 mold
yn particle modeling 8x8x8x4 automated,

TLS-based

 raytr
ace 3D raytracer 150x150 image automated,

TLS-based
jBYTE

mark [6]
jbyte
_B5

resource
allocation 51x51 array automated,

TLS-based

 jbyte
_B6 data encryption — automated,

TLS-based

 jbyte
_B8 neural network 35x8x8

network
automated,
TLS-based

 jbyte
_B9

dense matrix
factorization

101x101
matrix

automated,
TLS-based

SPECjvm
98 [34] mtrt raytracer 200x200 image automated,

TLS-based
Java Code

[27]
shall
ow

shallow water
model 256x256 grid automated,

TLS-based

Some applications analyzed for transactional behavior.

Each of these benchmarks was run through a three-part
investigative process. The first part consisted of examining
existing benchmarks and inserting markers at the end of
transactions and to replace conventional interprocessor
synchronization. Afterwards, we ran the applications on an
execution-driven simulator fixed to execute at one instruction
per cycle, with perfect cache behavior (with real cache misses,
this IPC will usually approximate the performance of an
aggressive superscalar processor), and produce traces of all
executed loads and stores (except stack references, which were
guaranteed to be local to each processor) in the benchmarks.
Once we had obtained traces of parallel execution from our

The TCC Research Project 27

selection of benchmarks, we fed these traces into an analyzer
that simulated the effects of running them in parallel on a very
flexible transactional system. On this system, we were able to
adjust parameters such as the number of processors, the
commit bus bandwidth, speculative cache line bit
configurations, and the overheads associated with various
parts of the transactional protocol. The unusual characteristics
of TCC allow such a simple simulation environment to still get
reasonable performance estimates: the fixed ILP did not
matter much because TCC is a thread level parallelism
extraction mechanism, largely orthogonal to ILP extraction
within the individual processor cores, and the fact that TCC
only allows processor interaction at transaction commit made
the precise timing of loads and stores within the transactions
largely irrelevant. In fact, the most critical timing parameter
that we obtained from simulation was the approximate cycle
time of entire transactions. As a result, we were able to
simulate a wide variety of potential system configurations
with a reasonable amount of simulation time. While more
detailed simulations will be necessary to investigate the full
potential of TCC, this relatively simple study has allowed us
to show what parts of the parallel computing design space are
amenable to conversion to TCC, and to provide some
estimates as to the buffering and bandwidth requirements that
will be necessary for hardware support of TCC.

The TCC Research Project 28

6 SIMULATION RESULTS

6.1 Limits of Available Parallelism

Our first results show the limits of parallelism available in our
benchmarks that can be extracted with a TCC system. Fig. 4
shows the speedups that can be obtained on these applications
as the number of processors varies from 1 to 32 in an
“optimal” TCC system.

Figure 4: Speedups for varying numbers of processors
with our manually parallelized benchmarks (a) and Java
benchmarks with automated parallelism (b) on a perfect

TCC system with 1 IPC processors, no memory delays, and ∞
commit bandwidth.

This perfect system has infinite commit bus bandwidth
between the processors. The speedups achieved with several
benchmarks are close to the optimal linear case, and many
others are competitive when compared with previously

The TCC Research Project 29

published results obtained on conventional systems in papers
such as [38]. As is illustrated in Fig. 5, there are several reasons
why speedups are limited. Sequential code remaining in
several of the applications limits speedup through Amdahl’s
law (“idle” time). Load imbalance in parallel regions slows
down water and fft (“waiting” time). Finally, while we were
generally very successful at eliminating dependencies among
transactions, some applications still suffer from occasional
violations caused by true inter-transaction dependencies
remaining in the programs. For example, in SPECjbb we
eliminated all locks protecting various parts of the warehouse
databases. As long as multiple transactions do not modify the
same objects simultaneously, they may run in parallel, but
since we have multiple processors running within the same
warehouse, there is always a probability that simultaneous
modifications may cause one of the transactions to violate.

Figure 5: Distribution of execution time

on the perfect TCC system’s processors between useful
work, violated time (failed transactions), waiting time
(load imbalance in parallel code), and idle time (time

waiting during sequential code).

The TCC Research Project 30

As a further example of this, we show results for equake
parallelized into versions with both long (equake_l) and short
(equake_ s) transactions. The longer transactions tended to
incur more violations and experienced much less speedup. On
benchmarks like this, the positioning and frequency of
transaction commits can clearly be critical.
We also parallelized several versions of radix to have different
transaction sizes. However, radix has been manually tuned to
eliminate dependencies and load imbalance between
processors, so baseline speedups changed very little across the
various versions.

6.2 Buffering Requirements for Typical Transactions

Figure 6: State read by individual transactions

with store buffer granularity of 64-byte cache lines. We
show state required by the smallest 10%, 50%, and 90%

of iterations.

The TCC Research Project 31

The most significant hardware cost of a TCC system is in the
addition of the speculative buffer support to the local cache
hierarchy. As a result, it is critical that the amount of state read
and/or written by an average transaction be small enough to
be buffered on-chip. To get an idea about the size of the state
storage) required, Figs. 6 and 7 show the size of the buffers
needed to hold the state read or written by 10%, 50%, and 90%
of each application’s transactions, sorted by the size of the 90%
limit.

Virtually all applications have a few very large transactions
that will definitely cause overflow, but hardware should have
enough room to avoid overflow on most transactions in order
to keep the number of early commit permission claims to a
minimum. 90% or better is a good initial target, but even fewer
overflows may be necessary for good performance on systems
with many processors.

Figure 7: Same as Fig. 6, but for write state.

The TCC Research Project 32

State size is mostly dependent upon the sizes of “natural”
transactional code regions, such as loop bodies, that are
available for exploitation within an application. As such, it is
very application dependent, but generally quite reasonable.
With the exception of mtrt and SPECjbb, all of our
benchmarks worked fine within about 6-12 KB of read state —
well within the size of even the smallest caches today — and
about 4-8 KB of write state.

The buffer-hungry applications generally still had low 10%
and 50% breakpoints, so even those would probably work
reasonably well with small buffers, although noticeable
serialization from buffer overflow would undoubtedly occur.
While our various versions of radix did not vary much in
terms of speedup, they varied dramatically in the size of their
read and write state.Our radix_l and radix_xl (not plotted,
because it was so large) variations required very large
amounts of state with each transaction. However, it was
relatively easy to scale these down to smaller transactions with
little impact on the system performance. Based on our
examination of the code, many dense-matrix applications such
as swim and tomcatv should have similar properties. Any of
these “transaction size tolerant” applications would also be
excellent targets for use with hardware commit control, which
could help the programmer size transaction regions optimally
for the available buffer sizes. This would be especially helpful
if widely varying datasets may be used, as transactions that
entirely contain inner loops may vary in size along with the
dataset.

The TCC Research Project 33

6.3 Limited Bus Bandwidth

Fig. 8 shows the average number of addresses

For our “perfect” sample system, Fig. 8 shows the average
number of addresses that must be broadcast on every cycle in
order to commit all write state produced by all transactions in
a system, when the state is stored as 64-byte cache lines. While
bus activity in a TCC system is likely to be bursty, the average
bandwidths are useful measures because of the ease with
which TCC commit packets may be buffered. Because there
are no delays in our system for cache misses or
communication contention, these should be considered as an
upper bound for instruction streams averaging 1 IPC. These
numbers can be scaled up to indicate potential maximums for
TCC systems composed of wide-issue superscalar cores, or
down for simple processors.

The TCC Research Project 34

Fig. 9. the amount of data being broadcast

For all of our applications, the number of addresses per cycle
is well below one, so a single snoop port on every processor
node should be sufficient for designs of up to 32 processors,
and can probably scale up to about 128 simple processors or a
smaller number of wide-issue superscalar processors before
additional snoop bandwidth would be required. These results
also indicate that small TCC systems using an invalidate
protocol would usually produce less than about 0.5
bytes/cycle with 32-bit addresses. On the other hand, if an
update protocol is used then the amount of data being
broadcast may still be prodigious, as is shown in Fig. 9. On
some of the applications (about a half of this sample), we may
even be broadcasting more data than a processor executing a
write through-based cache coherency mechanism, as
illustrated in Fig. 10, with a high of nearly 18 bytes per cycle
from the versions of radix with small transactions (and
therefore more frequent commits) for 32 processor systems.

The TCC Research Project 35

Fig. 10 write through-based mechanism

While TCC allows writes to be combined together into
buffered cache lines over the course of a transaction, the
committing of extra “clean” sections of partially modified lines
in the write state can push up the overall bandwidth
requirements dramatically. This problem can be almost
completely overcome by modifying the commit broadcast unit
to only send out modified parts of committing cache lines,
limiting bandwidth to just the black part of the bars in Fig. 9
and limiting the amount of broadcast bandwidth required to
about 7 bytes per cycle, even on the worst case applications
like lu, swim, and tomcatv. For more typical applications, a
range of 2–4 bytes per cycle would be sufficient.

6.4 Other Limited Hardware

While the previous runs with “perfect” hardware are helpful
for determining if TCC is a viable idea, they do not show how
a real TCC system will work in practice, where issues like

The TCC Research Project 36

finite bus bandwidths, reduced numbers of read state bits,
limited buffering, and time to handle the various protocol
overheads can all be significant limiting factors on speedup.
This section attempts to look at a few of these issues by
varying some of the parameters with an 8-processor system.

Fig. 11. full cache line committed per cycle

We simulated finite bus bandwidths ranging from very high
(68 bytes/cycle, a full cache line committed per cycle) to levels
that would be reasonable in a high-performance CMP or even
a potentially board-level system with a high-performance
interconnect, and present the results in Fig. 11. Most
applications were relatively insensitive to these levels of
bandwidth limits, but a few that had a large write state and
relatively short transactions, notably fft, experienced some
degradation. Larger numbers of processors or an even more
constrained interconnect are necessary for bandwidth to
become a major limiting factor for TCC systems.

The TCC Research Project 37

In addition, we tried making the timing overhead required for
commit permission arbitration non-zero, with times ranging
from 5 cycles (necessary for arbitration across a large chip) to
200 cycles (which may be necessary on a larger board-size
system), and present these results in Fig. 12.

Fig. 12. overhead required for commit arbitration

SPECjbb, SPLASH applications, and compiler-parallelized
SPEC FP applications, which have been designed for use on
large systems, were almost totally insensitive to this factor.
TLS-derived applications, on the other hand, were often quite
sensitive, as their transactions tended to be much smaller.
Similarly, the versions of equake and radix that had the
smallest transaction sizes showed much more degradation
from this overhead than the versions with longer transactions.

We found that optional state proved to be less useful with our
selection of applications and hardware parameters. Extra read
state bits (on a per-word instead of per-line basis) usually

The TCC Research Project 38

made no difference, but were essential with a few
applications. Most of our manually parallelized applications
were carefully tuned to avoid the “false violations,” as they
were already blocked to avoid false cache sharing, but some of
the TLS-parallelized applications, whose data structures had
not been modified for parallelism, were dependent upon
hardware to avoid extraneous violations. Memory renaming
bits were only critical for two of the Java TLS applications,
jbyte_B5 and mtrt, as they re-used some “scratchpad” data
structures in each transaction. Our analysis also showed little
gain from double buffering, surprisingly enough. When we
turned it off, not much happened. However, these tests were
performed with relatively plentiful system bandwidth. Since
double-buffering is primarily a technique to avoid waiting for
a busy broadcast medium, it should still prove to be useful in
more bandwidth-limited environments.

The TCC Research Project 39

7 CONCLUSIONS

We have analyzed a variety of implementations of TCC
systems, including an optimal one, and determined that TCC
can be used to obtain good performance over a wide variety of
existing parallel application domains, while providing a
programming model that significantly simplifies the task of
writing parallel programs. Our analysis of TCC with a wide
range of applications shows that each processor node requires
6–12 KB of read buffering space in its caches and 4–8 KB of
write buffering to achieve high-performance execution on
most applications. This buffer memory adds little overhead to
the existing cache hierarchy already present within the node.
The main limitation of TCC is that it requires high broadcast
bandwidth among the processor nodes to maintain all
processor’s memory in a coherent state. For an 8 processor
system, the interprocessor interconnect bandwidth must be
large enough to sustain about 2–4 bytes per cycle per average
processor IPC to support an update protocol, or usually less
then 0.5 bytes per cycle for an invalidate protocol. These rates
are easy to sustain within a CMP, and perhaps even a single-
board multiprocessor. On these types of systems, we believe
that TCC could be a high-performance but much simpler
alternative to traditional cache coherence and consistency.
This initial investigation of TCC suggests many potential
directions for future work. The most critical is an evaluation of
TCC with realistic hardware models for a CMP and/or a
board-level system. A detailed evaluation of the TCC
programming environment is also a priority, since one of the
main advantages of TCC is its simplified parallel
programming model. Further out, we see TCC being extended

The TCC Research Project 40

to be more scalable by imposing levels of hierarchy on the
commit arbitration and snoop mechanisms and possibly by
allowing some overlap between commits. More functionality
may also be added, such as the hardware commit
mechanisms, extensions to the data localization, or system
reliability mechanisms that use TCC’s continuous speculative
transactions to roll back the current transaction after transient
faults.

We would like to thank the anonymous reviewers for their valuable feedback.
This work was supported by NSF grant CCR- 0220138 and DARPA PCA
program grants F29601-01-2-0085 and F29601-03-2-0117.

8 REFERENCES

[1] S. V. Adve and K. Gharachorloo, “Shared Memory
Consistency Models: A Tutorial,” IEEE Computer, Vol. 29 No.
12, pp. 66–76, Dec. 1996.

[2] S. V. Adve and M. D. Hill, “Weak Ordering: A New
Definition,” Proc. of the 17th Annual International Symposium on
Computer Architecture, June 1990.

[3] A. Agarwal, J. L. Hennessy, R. Simoni, and M. A.
Horowitz, “An Evaluation of Directory Schemes for Cache
Coherence,” Proceedings of the 15th International Symposium on
Computer Architecture, June 1988.

[4] A. Ahmed, P. Conway, B. Hughes, F. Weber, “AMD
Opteron™ Shared Memory MP Systems,” Conference Record of
Hot Chips 14, Stanford, CA, Aug. 2003

The TCC Research Project 41

[5] D.Bossen, J. Tendler, K. Reick, “Power4 system design for
high reliability,” IEEE MICRO Magazine, Vol. 22 No. 2 , pp. 16–
24, March-April 2002.

[6] Byte Magazine, jBYTEmark Benchmark,
http://www.byte.com, CMP Media LLC, 1999.

[7] A. Charlesworth, “Starfire: Extending the SMP Envelope,”
IEEE Micro Magazine, Vol. 18 No. 1, pp. 39-49, Jan.-Feb. 1998.

[8] M. K. Chen and K. Olukotun, “The Jrpm System for
Dynamically Parallelizing Java Programs,” Proceedings of the
30th International Symposium on Computer Architecture (ISCA),
pp. 434–445, June 2003.

[9] M. Dubois, C. Scheurich, and F. Briggs, “Synchronization,
Coherence, and Event Ordering,” IEEE Computer, February
1988.

[10] M. Franklin and G. Sohi, “ARB: A hardware mechanism
for dynamic reordering of memory references,” IEEE
Transactions on Computers, Vol. 45 No. 5, pp. 552–571, May
1996.

[11] K. D. Gharachorloo, J. Laudon, P. Gibbons, A. Gupta, and
J. L. Hennessey, “Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors,” Proceedings of the
17th International Symposium on Computer Architecture, June
1990.

[12] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is SC + ILP =
RC,” Proceedings of the 26th Annual International Symposium on
Computer Architecture, pp. 162–171, May 1999.

The TCC Research Project 42

[13] J. R. Goodman, “Using Cache Memory to Reduce
Processor-Memory Traffic,” Proceedings of the 10th Annual
International Symposium on Computer Architecture, June 1983.

[14] S. Gopal, T.N. Vijaykumar, J. E. Smith and G. S. Sohi,
“Speculative Versioning Cache,” Proceedings of the Fourth
International Symposium on High-Performance Computer
Architecture (HPCA-4), Feb. 1998.

[15] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993.

[16] L. Hammond, B. Hubbert , M. Siu, M. Prabhu , M. Chen ,
and K. Olukotun, “The Stanford Hydra CMP,” IEEE MICRO
Magazine, March-April 2000.

[17] M. Herlihy and J. Moss, “Transactional Memory:
Architectural Support for Lock-Free Data Structures,”
Proceedings of the 20th International Symposium on Computer
Architecture, pp. 289-300, 1993.

[18] Java Grande Forum, Java Grande Benchmark Suite,
http://www.epcc.ed.ac. uk/javagrande/, 2000.

[19] R. Kalla, B. Sinharoy, and J. Tendler, “Simultaneous
Multi-threading Implementation in POWER5,” Conference
Record of Hot Chips 15 Symposium, Stanford, CA, Aug. 2003.

[20] V. Krishnan and J. Torrellas, “A Chip Multiprocessor
Architecture with Speculative Multithreading,” IEEE
Transactions on Computers, Special Issue on Multithreaded
Architecture, September 1999.

The TCC Research Project 43

[21] H. T. Kung and J. T. Robinson, “On Optimistic Methods
for Concurrency Control,” ACM Transactions on Database
Systems, Vol. 6 No. 2, June 1981.

[22] J. P. Lamport, “How to make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs,” IEEE
Transactions on Computers, Vol. 28 No. 9, pp. 690-691, 1979.

[23] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J.
L. Hennessy, “The Stanford DASH Multiprocessor,”
Proceedings of the 17th International Symposium on Computer
Architecture, June 1990.

[24] M. Martin, M. Hill, and D. Wood, “Token Coherence:
Decoupling Performance and Correctness,” Proceedings of the
30th International Symposium on Computer Architecture, pp. 182–
193, June 2003.

[25] J. Martinez and J. Torrellas, “Speculative Synchronization:
Applying Thread-Level Speculation to Parallel Applications,”
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-X), October, 2002.

[26] C. McNairy and D. Soltis, “Itanium 2 Processor
Microarchitecture,” IEEE MICRO Magazine , Vol. 23 No. 2, pp.
44–55, March-April 2003.

[27] J. Moreira, S. Midkiff, M. Gupta, and P. Artigas,
Numerically Intensive Java, IBM at
http://www.alphaworks.ibm.com/tech/ninja/, April 1999.

The TCC Research Project 44

[28] M. Papamarcos and J. Patel, “A Low Overhead Coherence
Solution for Multiprocessors with Private Cache Memories,”
Proceedings of the 11th Annual International Symposium on
Computer Architecture, June 1984.

[29] M. K. Prabhu and K. Olukotun, “Using Thread-Level
Speculation to Simplify Manual Parallelization,” Proceedings of
the Principles and Practice of Parallel Programming (PPoPP), pp.
1–12, June 2003.

[30] R. Rajwar and J. Goodman, “Transactional Lock-Free
Execution of Lock- Based Programs,” Proceedings of the 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), October 2002.

[31] R. Rajwar and J. Goodman, “Speculative Lock Elision:
Enabling Highly Concurrent Multithreaded Execution,”
Proceedings of the 34th International Symposium on
Microarchitecture (MICRO-34), December 2001.

[32] P. Rundberg and P. Stenstrom, “Reordered Speculative
Execution of Critical Sections,” Proceedings of the 2002
International Conference on Parallel Processing (ICPP �02), Feb.
2002.

[33] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar
processors,” Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pp. 414–425, June 1995.

[34] Standard Performance Evaluation Corporation, SPEC*,
http://www. specbench.org/, Warrenton, VA, 1995–2000.

The TCC Research Project 45

[35] Stanford Parallel Applications for Shared Memory (SPLASH-
2), http:// www-flash.stanford.edu/apps/SPLASH/

[36] J. Steffan and T. Mowry, “The Potential for Using Thread-
Level Data Speculation to Facilitate Automatic
Parallelization,” Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture, Las
Vegas, Nevada, 1998.

[37] T. Wilkinson, Kaffe Virtual Machine, http://kaffe.org, 1997–
2002.

[38] S. Woo, M. Ohara, E. Torrie, J.P.Singh, and A. Gupta, “The
SPLASH2 Programs: Characterization and Methodological
Considerations,” Proceedings of the 22nd International
Symposium on Computer Architecture, pp. 24–36, June 1995.
