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Q u a t e r n i o n s ,  a n  o v e r v i e w .  
 
The complex numbers are, numbers that have two components called real and imaginary that 
can often be interpreted as 2 dimensions. A complex number is normally written as a + ib where 
i2 = -1 and a and b are two real values quantities.  
This idea can be extended to higher dimensions, but it turns out that 4 components have useful 
properties. These are called quaternions and are attributed to Sir William Rowan Hamilton who 
published a major analysis in 1844 called "On a Species of Imaginary Quantities Connected with 
a Theory of Quaternions" in the Proceedings of the Royal Irish Academ (2, pp 424-434).  

Definition 
In this discussion we will write a quaternion "Q" as 

Q = r + a i + b j + c k 

 
Where r is the real component and a; b; c real values. This 4 (r;a;b;c) might be considered to be 
a vector in the 4D quaternion space.  
When performing operations on complex numbers whenever one encounters i2 then one 
knows that is equal to the simpler -1. There are similar but slightly more complicated 
relationships between i;j;k in quaternion space. They are as follows:  

i2 = j2 = k2 = -1  
i j = k j k = i k i = j 
j i = -k k j = -i i k = -j 

Note that the order in which i;j;k appears in an expression is important. Also note that there is 
no linear relationship between i;j;k.  

Addition  
Addition (or subtraction) of two quaternions Q1 = r1 + a1 i + b1 j + c1 k and Q2 = r2 + a2 i + b2 j + c2 k is 
performed as follows.  

Q1 + Q2 = r1+r2 + (a1+a2) i + (b1+b2) j + (c1 + c2) k  

Congujate  
The congujate of Q = Q* = r - a i - b j - c k.  

Multiplication  
Multiplication of two quaternions is somewhat involved but follows directly from the 
relationships above. 

Q1 Q2 = [ r1 r2 - a1 a2 - b1 b2 - c1 c2 ] + 
[ r1 a2 + a1 r2 + b1 c2 - c1 b2 ] i + 
[ r1 b2 + b1 r2 + c1 a2 - a1 c2 ] j + 
[ r1 c2 + c1 r2 + a1 b2 - b1 a2 ] k  

Note that quaternion multiplication is not commutative, that is, Q1 Q2 is NOT the same as Q2 Q1  
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Length (modulus)  
The length (magnitude) of a quaternion is the familiar coordinate length in 4 dimensional 
space.  

|Q| = sqrt( Q Q* )  

where Q* is the congujate (see later) which expands to  

|Q| = sqrt(r2 + a2 + b2 + c2)  

and  

|Q1 Q2| = |Q1| |Q2|  

Inverse  
The inverse of a quaternion Q-1 such that Q Q-1 = 1 is given by 
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The inverse of a normalised quaternion is simply the congujate, otherwise the magnitude of the 
inverse is 1/|Q|. So the above expression normalises the quaternion and then scales by 1/|Q|.  

Division  
Division of Q1 by Q2 is as follows  
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Exponential  
If m = sqrt(a2 + b2 + c2) and v is the unit vector (a,b,c) / m then the exponential of the quaternion 
Q is  

exp(Q) = exp(r) [ cos(m), v sin(m) ]  

Polar Coordinates  
The equivalent to polar coordinates in quaternion space are  

r = |Q| cos(theta1)  
a = |Q| sin(theta1) cos(theta2)  
b = |Q| sin(theta1) sin(theta2) cos(theta3)  
c = |Q| sin(theta1) sin(theta2) sin(theta3)  

theta1 is known as the amplitude of the quaternion, theta2 and theta3 are the latitude (or co-
latitude) and longitude respectively. The representative point of a quaternion is the normalised 
vector (a,b,c), that is, where (a,b,c) intersects the unit sphere centered at the origin.  

Rotation of a vector about another vector  
To rotate a 3D vector "p" by angle theta about a (unit) axis "r" one forms the quaternion  

Q1 = (0,px,py,pz)  

and the rotation quaternion  

Q2 = (cos(theta/2), rx sin(theta/2), ry sin(theta/2), rz sin(theta/2)).  
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The rotated vector is the last three components of the quaternion  

Q3 = Q2 Q1 Q2
*  

It is easy to see that rotation in the opposite direction (-theta) can be achieved by reversing the 
order of the multiplication.  

Q3 = Q2
* Q1 Q2  

Note also that the quaternian Q2 is of unit magnitude, and needs to be in order to be a valid 
rotation.  

Converting a quaternion to a matrix  
Given a quaternion rotation the corresponding 3x3 rotation matrix M is given by  

M = 

 

1 - 2 b2 - 2 c2  2 a b - 2 r c  2 a c + 2 r b  

2 a b + 2 r c  1 - 2 a2 - 2 c2  2 b c - 2 r c  

2 a c - 2 r b  2 b c + 2 r c  1 - 2 a2 - 2 b2  
  

 
~~~~~ 


